Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-05T05:07:19.916Z Has data issue: false hasContentIssue false

BODY WEIGHT OF PODISUS MACULIVENTRIS (SAY) UNDER VARIOUS FEEDING REGIMENS

Published online by Cambridge University Press:  31 May 2012

Robert J. O’Neil
Affiliation:
Department of Entomology, Purdue University, West Lafayette, Indiana, USA 47907
Robert N. Wiedenmann
Affiliation:
Department of Entomology, Purdue University, West Lafayette, Indiana, USA 47907

Abstract

Body weights were measured for Podisus maculiventris (Say) (Heteroptera: Pentatomidae) given low prey inputs. Predators were fed green bean slices ad lib and a single mealworm larva (Tenebrio molitor L.) of one of two size classes, for a 24-h period every 1, 2, 4, 8, or 16 days. Other treatments included predators fed to excess of daily attacks, predators given only green bean slices, and predators given no food. Results showed that predators fed bean slices maintained body weight after an initial decline, whereas predators given no food lost weight continually until death. Predators maintained weight when fed prey ad lib, and when fed prey of either size daily. Those fed at longer intervals lost weight between feedings, and weight fluctuations increased as the interfeeding interval increased. Slopes of weight change between feedings did not differ significantly for predators fed at 2- through 16-day intervals. During oviposition, predators lost about 15 mg of body weight. Egg clutches comprised about 60% of the weight lost. Egg weights did not differ among treatments. The results suggest that P. maculiventris can survive long periods without prey, and adjusts its weight loss by reducing reproductive effort when prey become scarce. The importance of these adaptations for P. maculiventris to sustain populations in agricultural systems is discussed.

Résumé

La masse corporelle de Podisus maculiventris (Say) (Heteroptera : Pentatomidae) a été déterminée pour des individus nourris d’une faible quantité de proies. Pour une période de 24 h, à tous les 1, 2, 4, 8 et 16 jours, les prédateurs ont été nourris à volonté de tranches de haricot vert et d’une grosse ou d’une petite chenille de Tenebrio molitor (L.). Dans d’autres traitements, les prédateurs ont été nourris d’un excès de grosses chenilles de T. molitor ou de tranches de haricot vert seulement ou n’ont reçu aucune nourriture. Les prédateurs nourris de haricots ont initiallement perdu du poids mais ont par la suite maintenu leur masse corporelle, alors que ceux auxquels on a refusé accès à la nourriture ont perdu du poids continuellement jusqu’à la mort. Les prédateurs nourris d’un excès de grosse chenilles ainsi que ceux nourris journalièrement d’une petite ou d’une grosse chenille ont maintenu leur poids. Par contre, lorsque l’intervalle entre chaque repas a été plus long, il y a eu perte de poids entre les repas, et cette perte s’est accentuée avec la durée des intervalles. Néanmoins, les niveaux de variation de poids (pentes des régressions) n’ont pas été significativement différents pour des intervalles de 2 à 16 jours. Pendant la ponte, les prédateurs ont perdu environ 15 mg de masse corporelle dont 60% est imputable à la masse des oeufs pondus. La masse des oeufs n’a pas différé entre les traitements. Les résultats suggèrent que P. maculiventris peut survivre longtemps sans proie et peut compenser pour sa perte de poids en réduisant son effort reproducteur lorsque les proies deviennent rares. L’importance de ces adaptations pour le maintient des populations de P. maculiventris dans les agro-systèmes est discutée.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aldrich, J.R. 1986. Seasonal variation of black pigmentation under the wings in a true bug (Hemiptera: Pentatomidae): a laboratory and field study. Proc. ent. Soc. Wash. 88: 409421.Google Scholar
Anderson, J.F. 1974. Responses to starvation in the spiders Lycosa lenta Hentz and Filistata hibernalis (Hentz). Ecology 55: 576585.CrossRefGoogle Scholar
Baumgaertner, J.U., Gutierrez, A.P., and Summer, C.G.. 1981. The influence of aphid prey consumption on searching behavior, weight increase, developmental time, and mortality of Chrysopa carnea (Neuroptera: Chrysopidae) and Hippodamia convergens (Coleoptera: Coccinellidae) larvae. Can. Ent. 113: 10071014.CrossRefGoogle Scholar
Calow, P. 1973. The relationship between fecundity, phenology and longevity: a systems approach. Am. Nat. 107: 559574.CrossRefGoogle Scholar
Crawley, M.J. 1975. The numerical responses of insect predators to changes in prey density. J. Anim. Ecol. 44: 877892.CrossRefGoogle Scholar
Drummond, F.A., James, R.L., Casagrande, R.A., and Faubert, H.. 1984. Development and survival of Podisus maculiventris (Say) (Hemiptera: Pentatomidae), a predator of Colorado potato beetle (Coleoptera: Chrysomelidae). Environ. Ent. 13: 12831286.CrossRefGoogle Scholar
Eberhard, W.G. 1979. Rates of egg production by tropical spiders in the field. Biotropica 11: 292300.CrossRefGoogle Scholar
Eisenberg, R.M., Hurd, L.E., and Bartley, J.A.. 1981. Ecological consequences of food limitation for adult mantids (Tenodera ardifolia sinensis Saussure). Am. Midl. Nat. 106: 209218.CrossRefGoogle Scholar
Evans, E.W. 1982 a. Consequences of body size for fecundity in the predatory stinkbug, Podisus maculiventris (Hemiptera: Pentatomidae). Ann. ent. Soc. Am. 75: 418420.CrossRefGoogle Scholar
Evans, E.W. 1982 b. Timing of reproduction by predatory stinkbugs (Hemiptera: Pentatomidae): patterns and consequences for a generalist and specialist. Ecology 63: 147158.CrossRefGoogle Scholar
Frazer, B.D., and Gill, B.. 1981. Hunger, movement, and predation of Coccinella californica on pea aphids in the laboratory and in the field. Can. Ent. 113: 10251033.CrossRefGoogle Scholar
Gutierrez, A.P., Baumgaertner, J.U., and Hagen, K.S.. 1981. A conceptual model for growth, development, and reproduction in the ladybird beetle, Hippodamia convergens (Coleoptera: Coccinellidae). Can. Ent. 113: 2133.CrossRefGoogle Scholar
Hassell, M.P. 1978. The Dynamics of Arthropod Predator–Prey Systems. Princeton University Press, Princeton, NJ. 237 pp.Google ScholarPubMed
Holling, C.S. 1966. The functional response of invertebrate predators to prey density. Mem. ent. Soc. Can. 48: 186.Google Scholar
Lenski, R.E. 1984. Food limitation and competition: a field experiment with two Carabus species. J. Anim. Ecol. 53: 203216.CrossRefGoogle Scholar
Matsura, T. 1981. Responses to starvation in a mantis, Paratenodera angustipennis (S.). Oecologia 50: 291295.CrossRefGoogle Scholar
Mills, N.J. 1982. Satiation and the functional response: a test of a new model. Ecol. Ent. 7: 305315.CrossRefGoogle Scholar
Morris, R.F. 1963. The effect of predator age and prey defense on the functional response of Podisus maculiventris Say to the density of Hyphantria cunea Drury. Can. Ent. 95: 10091020.CrossRefGoogle Scholar
Mukerji, M.K., and LeRoux, E.J.. 1965. Laboratory rearing of a Quebec strain of the pentatomid predator, Podisus maculiventris (Say) (Hemiptera: Pentatomidae). Phytoprotect. 46: 4060.Google Scholar
Mukerji, M.K., and LeRoux, E.J.. 1969. A quantitative study of food consumption and growth of Podisus maculiventris (Hemiptera: Pentatomidae). Can. Ent. 101: 387403.CrossRefGoogle Scholar
Murdoch, W.W. 1966. Population stability and life history phenomena. Am. Nat. 100: 512.CrossRefGoogle Scholar
O'Neil, R.J. 1988 a. Predation by Podisus maculiventris (Say) on Mexican bean beetle, Epilachna varivestis Mulsant, in Indiana soybeans. Can. Ent. 120: 161166.CrossRefGoogle Scholar
O'Neil, R.J. 1988 b. A model of predation by Podisus maculiventris (Say) on Mexican bean beetle, Epilachna varivestis Mulsant, in soybeans. Can. Ent. 120: 601608.CrossRefGoogle Scholar
O'Neil, R.J., and Wiedenmann, R.N.. 1987. Adaptations of arthropod predators to agricultural systems. Fla. Ent. 70: 4048.CrossRefGoogle Scholar
Richman, D.B., Hemenway, R.C. Jr., and Whitcomb, W.H.. 1980. Field cage evaluation of predators of the soybean looper, Pseudoplusia includens (Lepidoptera: Noctuidae). Environ. Ent. 9: 315317.CrossRefGoogle Scholar
Richman, D.B., and Whitcomb, W.H.. 1978. Comparative life cycles of four species of predatory stink bugs. Fla. Ent. 61: 113119.CrossRefGoogle Scholar
Tanaka, K., and Ito, Y.. 1982. Different response in respiration between predaceous and phytophagous lady beetles (Coleoptera: Coccinellidae) to starvation. Res. Popul. Ecol. 24: 132141.CrossRefGoogle Scholar
Waddill, V., and Shepard, M.. 1975. A comparison of predation by the pentatomids, Podisus maculiventris (Say) and Stiretus anchorago (F.), on the Mexican bean beetle, Epilachna varivestis Mulsant. Ann. ent. Soc. Am. 68: 10231027.CrossRefGoogle Scholar
Warren, L.O., and Wallis, G.. 1971. Biology of the spined soldier bug, Podisus maculiventris (Hemiptera: Pentatomidae). J. Ga. ent. Soc. 6: 109116.Google Scholar
Wiedenmann, R.N., and O'Neil, R.J.. 1990. Effects of low rates of predation on selected life-history characteristics of Podisus maculiventris (Say) (Heteroptera: Pentatomidae). Can. Ent. 122: 271283.CrossRefGoogle Scholar
Wise, D.H. 1975. Food limitation of the spider Linyphia marginata: experimental field studies. Ecology 56: 637646.CrossRefGoogle Scholar