Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-30T23:35:46.864Z Has data issue: false hasContentIssue false

Bird predation and the host-plant shift by the goldenrod stem galler

Published online by Cambridge University Press:  31 May 2012

A.C. Poff
Affiliation:
Department of Biology, University of North Dakota, Grand Forks, North Dakota, United States 58202
K.J. Haynes
Affiliation:
Department of Biology, University of North Dakota, Grand Forks, North Dakota, United States 58202
M. Szymanski
Affiliation:
Department of Biology, University of North Dakota, Grand Forks, North Dakota, United States 58202
D. Back
Affiliation:
Department of Biology, University of North Dakota, Grand Forks, North Dakota, United States 58202
M.A. Williams
Affiliation:
Department of Biology, University of North Dakota, Grand Forks, North Dakota, United States 58202
J.T. Cronin*
Affiliation:
Department of Biology, University of North Dakota, Grand Forks, North Dakota, United States 58202
*
2Corresponding author (e-mail: [email protected]).

Abstract

Escape from natural enemies may favor the incorporation of a novel host plant into the diet of an herbivorous insect. This scenario has been suggested for the recent host-plant shift by the goldenrod stem galler, Eurosta solidaginis Fitch (Diptera: Tephritidae), from the ancestral host Solidago altissima L. (Compositae) to the derived host Solidago gigantea Ait. In this study, we examined the effects of predation from downy woodpeckers, Picoides pubescens L. (Aves: Picidae), and black-capped chickadees, Parus atricapillus L. (Aves: Paridae), on these two host races of insects at the western edge of their zone of sympatry. Based on a field census, bird predation was concentrated near the cover of trees where S. gigantea tends to occur; few attacks occurred in the open where S. altissima is prevalent. We conducted a field experiment to evaluate the preference of these avian predators for galls of the two host races when differences in the microgeographic distribution, size, and height of galls were controlled. In allopatric sites where only S. gigantea occurs, attacks by birds were 58% more frequent on S. gigantea than on S. altissima galls. Similar results were found for sympatric sites, although the difference in attack was only 26% and not significant. We could find no difference in the toughness of galls or the nutritional value of a larva within the gall (in terms of biomass) to explain avian preference for the S. gigantea host race; however, we found that from 1999 to 2000, the S. gigantea race offered a 27–107% higher reward rate (i.e., the probability that a gall harbored a larva of E. solidaginis) than the S. altissima race. Our studies suggest that avian predators can assess a gall’s content prior to pecking it open, preferring galls that are inhabited by both E. solidaginis larvae and the inquiline predator Mordellistena convicta Leconte (Coleoptera: Mordellidae). It is possible that birds have either learned through experience or evolved through natural selection to choose the more profitable S. gigantea galls. Finally, our results suggest that avian predators act against the maintenance of two distinct host races in the midwestern United States.

Résumé

Une façon pour un insecte herbivore d’échapper à ses ennemis naturels consiste peut-être à adopter une nouvelle plante hôte. Ce scénario a été envisagé pour expliquer le passage récent de la mouche gallicole de la verge d’or, Eurosta solidaginis Fitch (Diptera : Tephritidae) de son hôte ancestral, Solidago altissima L. (Compositae), à un hôte dérivé, Solidago gigantea Ait. Au cours de cette étude, nous avons examiné les effets de la prédation exercée par les pics mineurs, Picoides pubescens L. (Aves : Picidae), et les mésanges à tête noire, Parus atricapillus L. (Aves : Paridae), sur ces deux races d’insectes à la limite ouest de leur zone de sympatrie. Un recensement sur le terrain a démontré que la prédation se faisait surtout près de la couverture des arbres où a tendance à se trouver S. gigantea et peu d’attaques ont eu lieu en milieu ouvert où S. altissima prédomine. Nous avons procédé à une expérience en nature pour évaluer les préférences de ces oiseaux prédateurs pour les galles des deux races d’insectes en tenant compte des différences dans leur répartition microgéographique, leur taille et la hauteur de leurs galles. Aux sites allopatriques où ne vit que S. gigantea, les attaques des oiseaux étaient de 58% plus fréquentes sur les galles de S. gigantea que sur celles de S. altissima. Des résultats semblables ont été obtenus aux sites sympatriques, bien que la différence dans la fréquence des attaques n’ait été que de 26%, une valeur non significative. Nous n’avons pas trouvé de différences dans la dureté des galles ou dans la valeur nutritive (biomasse) de la larve à l’intérieur de la galle qui puissent expliquer la préférence des oiseaux pour la race S. gigantea; cependant, nous avons constaté qu’en 1999–2000, la race S. gigantea présentait un taux de réussite (i.e. la probabilité de trouver une larve d’E. solidaginis dans la galle) de 27 à 107% plus élevé que celui de la race S. altissima. Nos résultats indiquent que les oiseaux prédateurs sont capables d’évaluer le contenu d’une galle avant de l’ouvrir et qu’ils préfèrent celles qui contiennent à la fois des larves d’E. solidaginis et leur prédateur inquilin Mordellistena convicta Leconte (Coleoptera : Mordellidae). Les oiseaux peuvent avoir acquis par expérience, ou sous l’influence de la sélection naturelle, une préférence pour les galles de S. gigantea, plus profitables. Enfin, nos résultats indiquent aussi que les oiseaux prédateurs défavorisent le maintien de deux races hôtes d’insectes dans le Midwest américain.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrahamson, W.G., Weis, A.E. 1997. The evolutionary ecology of a tritrophic-level interaction: goldenrod, the stem gallmaker and its natural enemies. Princeton, New Jersey: Princeton University PressGoogle Scholar
Abrahamson, W.G., Sattler, J.F., McCrea, K.D., Weis, A.E. 1989. Variation in selection pressures on the goldenrod gall fly and the competitive interactions of its natural enemies. Oecologia 79: 1522Google Scholar
Abrahamson, W.G., Brown, W.M., Roth, S.K., Sumerford, D.V., Horner, J.D., Hess, M.D., How, S.T., Craig, T.P., Packer, R.A., Itami, J.K. 1994. Gallmaker speciation: an assessment of the roles of host-plant characters, phenology, gallmaker competition, and natural enemies. pp 208–22 in Price, P.W., Mattson, W., Baranchikov, Y. (Eds), Gall-forming insects. USDA Forest Service, North Central Experiment Station: General Technical Report NC-174Google Scholar
Alcock, J. 1997. Animal Behavior. 6th edition. Sunderland, Massachusetts: Sinauer Associates, IncGoogle Scholar
Brown, J.M., Abrahamson, W.G., Packer, R.A., Way, P.A. 1995. The role of natural-enemy escape in a gallmaker host-plant shift. Oecologia 104: 5260Google Scholar
Brown, J.M., Abrahamson, W.G., Way, P.A. 1996. Mitochondrial DNA phylogeography of host races of the goldenrod ball gallmaker, Eurosta solidaginis (Diptera: Tephritidae). Evolution 50: 777–86CrossRefGoogle Scholar
Bush, G.L. 1975. Modes of animal speciation. Annual Review of Ecology and Systematics 6: 339–64CrossRefGoogle Scholar
Cane, J.H., Kurczewski, F.E. 1976. Mortality factors affecting Eurosta solidaginis (Diptera: Tephritidae). New York Entomological Society 84: 275–82Google Scholar
Confer, J.L., Paicos, P. 1985. Downy woodpecker predation at goldenrod galls. Journal of Field Ornithology 56: 5664Google Scholar
Craig, T.P., Itami, J.K., Price, P.W. 1990. The window of vulnerability of a shootgalling sawfly to attack by a parasitoid. Ecology 71: 1471–82CrossRefGoogle Scholar
Cronin, J.T., Abrahamson, W.G. 2001. Do parasitoids diversify in response to host-plant shifts by herbivorous insects. Ecological Entomology 26. 347–55Google Scholar
Diel, S.R., Bush, G.L. 1984. An evolutionary and applied perspective of insect biotypes. Annual Review of Entomology 29: 471504Google Scholar
Feder, J.L. 1995. The effects of parasitoids on sympatric host races of Rhagoletis omonella (Diptera: Tephritidae). Ecology 76: 801–13Google Scholar
Feeny, P. 1970. Seasonal changes in oak leaf tannins and nutrients as a cause of spring feeding by winter moth caterpillars. Ecology 51: 565–81CrossRefGoogle Scholar
Futuyma, D.J., Moreno, G. 1988. The evolution of ecological specialization. Annual Review of Ecology and Systematics 19: 207–33Google Scholar
Gilbert, L.E., Singer, M.C. 1975. Butterfly ecology. Annual Review of Ecology and Systematics 6: 365–97Google Scholar
Gratton, C., Welter, S.C. 1999. Does “enemy-free space” exist? Experimental host shifts of an herbivorous fly. Ecology 80: 773–85Google Scholar
Holm, S. 1979. A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics 6: 6570Google Scholar
Hufbauer, R.A., Via, S. 1999. Evolution of an aphid–parasitoid interaction: variation in resistance to parasitism among aphid populations specialized on different plants. Evolution 53: 1435–45Google ScholarPubMed
Itami, J.K., Craig, T.P., Horner, J.D. 1998. Factors affecting gene flow between the host races of Eurosta solidaginis. pp 375404in Mopper, S., Strauss, S.Y. (Eds), Genetic structure and local adaptation in natural insect populations: effects of ecology, life history, and behavior. New York: Chapman and HallCrossRefGoogle Scholar
Jaenike, J. 1990. Host specialization in phytophagous insects. Annual Review of Ecology and Systematics 21: 243–73Google Scholar
Jeffries, M.J., Lawton, J.H. 1984. Enemy-free space and the structure of biological communities. Biological Journal of the Linnean Society 23: 269–86CrossRefGoogle Scholar
Keese, M.C. 1997. Does escape to enemy free space explain host specialization in two closely related leaf feeding beetles (Coleoptera, Chrysomelidae)? Oecologia 112: 81–6Google Scholar
Lichter, J.P., Weis, A.E., Dimmick, C.R. 1990. Growth and survivorship differences in Eurosta (Diptera: Tephritidae) galling sympatric host plants. Environmental Entomology 19: 972–7CrossRefGoogle Scholar
Mayr, E. 1976. Evolution and diversity of life. Cambridge, Massachusetts: Harvard University PressGoogle Scholar
Milne, L.J. 1940. Autecology of the goldenrod gall fly. Ecology 21: 101–5Google Scholar
Moeller, R.K., Thogerson, M.T. 1978. Predation by the downy woodpecker on the goldenrod gall fly larva. Iowa Bird Life 48: 131–6Google Scholar
Price, P.W., Bouton, C.E., Gross, P., McPheron, B.A., Thompson, J.N., Weis, A.E. 1980. Interactions among three trophic levels: influence of plants on interactions between insect herbivores and natural enemies. Annual Review of Ecology and Systematics 11: 4165Google Scholar
Rice, W.R. 1989. Analyzing tables of statistical tests. Evolution 43: 223–5CrossRefGoogle ScholarPubMed
Rossi, A.M., Stiling, P., Cattell, M.V., Bowdish, T.I. 1999. Evidence for host-associated races in a gall-forming midge: trade-offs in potential fecundity. Ecological Entomology 24: 95102CrossRefGoogle Scholar
Schlichter, L. 1978. Winter predation by black-capped chickadees and downy woodpeckers on inhabitants of the goldenrod ball gall. Canadian Field-Naturalist 92: 71–4Google Scholar
Sokal, R.R., Rohlf, F.J. 1995. Biometry. 3th edition. New York: WH Freeman and CoGoogle Scholar
Sumerford, D.V., Abrahamson, W.G. 1995. Geographic and host species effects in Eurosta solidaginis (Diptera: Tephritidae) mortality. Environmental Entomology 24: 657–62Google Scholar
Thompson, J.N. 1996. Trade-offs in larval performance on normal and novel hosts. Entomologia Experimentalis et Applicata 80: 133–9CrossRefGoogle Scholar
Uhler, L.D. 1951. Biology and ecology of the goldenrod gall fly, Eurosta solidaginis (Fitch). Memoir of the Cornell University Agricultural Experiment Station 300: 151Google Scholar
Uhler, L.D. 1961. Mortality of the goldenrod gall fly, Eurosta solidaginis in the vicinity of Ithaca, New York. Ecology 42: 215–6Google Scholar
Walton, R. 1988. The distribution of risk and density-dependent mortality in the galls of Eurosta solidaginis, the goldenrod gall fly. Ecological Entomology 13: 347–54CrossRefGoogle Scholar
Waring, G.L., Abrahamson, W.G., Howard, D.J. 1990. Genetic differentiation among host-associated populations of the gallmaker Eurosta solidaginis (Diptera: Tephritidae). Evolution 44: 1648–55Google Scholar
Weis, A.E., Abrahamson, W.G. 1985. Potential selective pressures by parasitoids on a plant–herbivore interaction. Ecology 66: 1261–9CrossRefGoogle Scholar
Weis, A.E., Abrahamson, W.G., Andersen, M.C. 1992. Variable selection on Eurosta's gall size, I: the extent and nature of variation in phenotypic selection. Evolution 46: 1674–97Google Scholar