Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-26T04:57:28.753Z Has data issue: false hasContentIssue false

BIOSYNTHESIS OF CONIFEROPHAGOUS BARK BEETLE PHEROMONES AND CONIFER ISOPRENOIDS: EVOLUTIONARY PERSPECTIVE AND SYNTHESIS

Published online by Cambridge University Press:  31 May 2012

Steven J. Seybold*
Affiliation:
Departments of Entomology and Forest Resources, University of Minnesota, 219 Hodson Hall, 1980 Folwell Avenue, St. Paul, Minnesota, United States 55108-6125
Jörg Bohlmann
Affiliation:
Biotechnology Laboratory, University of British Columbia, 6174 University Boulevard, Vancouver, British Columbia, Canada V6T 1Z3
Kenneth F. Raffa
Affiliation:
Department of Entomology, University of Wisconsin, Madison, Wisconsin, United States 53706-1598
*
1 Author to whom all correspondence should be addressed (E-mail: [email protected]).

Abstract

In this overview we compare the significance and evolutionary history of two interacting biological systems, the conifer-feeding bark beetles (Coleoptera: Scolytidae) and their host conifers (Gymnospermae: Coniferales and Taxales). Isoprenoid natural products play key roles in the aggregation of the bark beetles and in the defence of the conifers. Our approach is to couple the most recent advances in the biochemical and molecular literature on these systems with ecological and behavioral data to compare monoterpenoid pheromone biosynthesis in scolytids with monoterpene biosynthesis in conifers. This synthesis reveals and evaluates the evolutionary redundancy occurring in the biochemical systems of the insect and host. Although host monoterpenes may be utilized directly or as derivatives in aggregation by scolytids, oxygenated monoterpenes that are behaviorally active for scolytids have been rarely identified from their coniferous hosts. De novo monoterpenoid biosynthesis in the Scolytidae, a process that is likely to be rare among metazoans, is substantially different from monoterpene biosynthesis in the conifers. The pathways appear to be shared only at the late-stage reactions that follow the formation of isopentenyl diphosphate. Little is known of the regulation of monoterpene biosynthesis in conifers, but scolytids positively regulate monoterpenoid biosynthesis using a sesquiterpenoid hormone, juvenile hormone, which does not occur in conifers. Little is known of the subcellular site of synthesis of monoterpenoids in scolytids, but conifer monoterpene biosynthesis is compartmentalized in the plastids, which do not occur in scolytid cells. In addition to bark beetles and conifers, the vertebrate model presents one of the few systems in which isoprenoid synthesis has been studied enough to provide a meaningful comparison. Possible unique features of monoterpenoid pheromone biosynthesis in scolytids relative to isoprenoid biosynthesis in vertebrates include the following: (1) a monoterpenoid end product; (2) a hypothetically scolytid-specific prenyl transferase (= geranyl diphosphate synthase) that catalyzes the condensation of two five-carbon (C5) units, but does not catalyze additional condensation reactions with the C5 monomelic unit; (3) a scolytid-specific monoterpene (myrcene) synthase; and (4) a scolytid-specific, transcriptional-level sesquiterpenoid isoprenoid regulatory mechanism. Features 2 and 3 may be shared with conifers. This review also updates the 1985 landmark scientific paper by John Borden by listing the references and species of coniferophagous Scolytidae for which aggregation pheromones have been identified since 1985.

Résumé

Dans cette révision, nous comparons l’importance et l’évolution de deux systèmes biologiques interactifs, les scolytes (Coleoptera : Scolytidae) qui se nourrissent à même les conifères et les conifères (Gymnospermae : Coniferales et Taxales) qui leur servent d’hôtes. Les produits naturels isoprénoïdes jouent un rôle important dans les agrégations de scolytes et la défense des conifères. Nous avons choisi comme approche de combiner les dernières découvertes en biochimie et en biologie moléculaire sur ces systèmes avec des données écologiques et comportementales, de façon à comparer la biosynthèse des phéromones monoterpénoïdes chez les scolytes et la biosynthèse des monoterpènes des conifères. Cette synthèse démontre et évalue la redondance évolutive qui prévaut dans les systèmes biochimiques des insectes et de leurs hôtes. Bien que les monoterpènes puissent être utilisés par les scolytes directement ou comme dérivés dans les agrégations, les monoterpènes oxygénés des conifères qui élicitent une réponse comportementale de la part des scolytes ont rarement été identifiés. La biosynthèse de novo des monoterpénoïdes chez les Scolytidae, un processus qui est probablement rare chez les métazoaires, diffère substantiellement de la biosynthèse des monoterpènes chez les conifères. Les voies empruntées semblent les mêmes seulement au cours des derniers stades qui suivent la formation des diphosphates d’isopentényle. On connaît peu de choses au sujet de la régulation de la biosynthèse des monoterpènes chez les conifères, mais les scolytes contrôlent certainement la biosynthèse des monoterpénoïdes par l’intermédiaire d’une hormone sesquiterpénoïde, l’hormone juvénile, qui n’existe pas chez les conifères. On ne connaît pas très bien non plus le site de synthèse des monoterpénoïdes chez les scolytes, mais la biosynthèse des monoterpènes des conifères est compartimentée dans les plastes, que l’on ne retrouve pas dans les cellules des scolytes. En plus des scolytes et des conifères, le modèle vertébré possède l’un des rares systèmes dans lequel la synthèse des isoprénoïdes a été suffisamment étudiée pour permettre une comparaison intéressante. Parmi les caractéristiques possiblement exclusives à la biosynthèse des phéromones monoterpénoïdes chez les scolytes par comparaison à la biosynthèse des isoprénoïdes chez les vertébrés, il faut mentionner (1) l’obtention d’un produit final monoterpénoïde, (2) une prényl-transférase (= gényl-diphosphate synthase), hypothétiquement spécifique aux Scolytidae, qui catalyse la condensation de deux unités 5-carbone (C5), mais ne catalyse pas les réactions additionnelles de condensation avec l’unité monomère C5, (3) une monoterpène (myrcène) synthase spécifique aux Scolytidae et (4) un mécanisme régulateur du niveau de transcription sesquiterpénoïde-isoprénoïde qui soit spécifique aux scolytes. Les caratéristiques 2 et 3 se rencontrent peut-être aussi chez les conifères. Cette révision met à jour l’ouvrage classique de John Borden (Borden 1985) en présentant la liste des références et en énumérant les espèces de Scolytidae coniférophages chez lesquelles les phéromones d’agrégation ont été identifiées depuis 1985.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abercrombie, M., Hickman, C.J., Johnson, M.L. 1980. The Penguin dictionary of biology. London: Penguin BooksGoogle Scholar
Alcock, J. 1982. Natural selection and communication among bark beetles. Florida Entomologist 65: 1732CrossRefGoogle Scholar
Allona, I., Quinn, M., Shoop, E., Swope, K., Carlis, J., Riedl, J., Retzel, E., Campbell, M.M., Sederoff, R., Whetten, R.W. 1998. Analysis of xylem formation in pine by cDNA sequencing. Proceedings of the National Academy of Sciences of the USA 95: 9693–8CrossRefGoogle ScholarPubMed
Alonso, W.R., Croteau, R. 1993. Prenyltransferases and cyclases. Methods in Plant Biochemistry 9: 239–60Google Scholar
Alvin, K.L. 1960. Further conifers of the Pinaceae from the Wealden Formation of Belgium. Memoirs de l'Institut Royal des Sciences Naturelles de Belgique 146: 139Google Scholar
Anderson, R.F. 1948. Host selection by the pine engraver. Journal of Economic Entomology 41: 596602CrossRefGoogle Scholar
Arigoni, D., Giner, J-L, Sagner, S., Wungsintaweekul, J., Zenk, M.H., Kis, K., Bacher, A., Eisenreich, W. 1999. Stereochemical course of the reduction step in the formation of 2-C-methylerythritol from the terpene precursor 1-deoxyxylulose in higher plants. Chemical Communications 1999: 1127–8Google Scholar
Atkins, M.D. 1966. Behavioral variation among Scolytids in relation to their habitat. The Canadian Entomologist 98: 85288CrossRefGoogle Scholar
Atkins, M.D. 1969. Lipid loss with flight in the Douglas-fir beetle. The Canadian Entomologist 101: 164–5CrossRefGoogle Scholar
Bach, T.J., Boronat, A., Campos, N., Ferrer, A., Vollack, K-U 1999. Mevalonate biosynthesis in plants. Critical Reviews in Biochemistry and Molecular Biology 34: 107–22CrossRefGoogle ScholarPubMed
Banan, M.W. 1936. Vertical resin ducts in the secondary wood of the Abietineae. New Phytologist 35: 1146CrossRefGoogle Scholar
Bedard, W.D. 1965. The biology of Tomicobia tibialis (Hymenoptera: Pteromalidae) parasitizing Ips confusus (Coleoptera: Scolytidae) in California. Contributions from Boyce Thompson Institute 23: 7782Google Scholar
Bedard, W.D., Tilden, P.E., Wood, D.L., Silverstein, R.M., Brownlee, R.G., Rodin, J.O. 1969. Western pine beetle: field response to its sex pheromone and a synergistic host terpene, myrcene. Science (Washington, DC) 164: 1284–5CrossRefGoogle Scholar
Bedard, W.D., Silverstein, R.M., Wood, D.L. 1970. Bark beetle phermones. Science (Washington, DC) 167: 1638–9CrossRefGoogle Scholar
Berenbaum, M.R. 1983. Coumarins and caterpillars: a case for coevolution. Evolution 37: 163–79CrossRefGoogle ScholarPubMed
Berryman, A.A. 1972. Resistance of conifers to invasion by bark beetle fungus associations. BioScience 22: 598602CrossRefGoogle Scholar
Berryman, A.A. 1979. Dynamics of bark beetle populations: analysis of dispersal and redistribution. Mitteilungen der Schweizerischen Entomologischen Gesellschaft 52: 227–34Google Scholar
Berryman, A.A. 1989. Adaptive pathways in scolytid–fungus associations. pp. 145–59 in Wilding, N., Collins, N.M., Hammond, P.M., Webber, J.F. (Eds), Insect–fungus interactions. London: Academic PressCrossRefGoogle Scholar
Bhakthan, N.M.G., Nair, K.K., Borden, J.H. 1969. Occurrence of a fat body layer around the testes of Ips confusus (Coleoptera: Scolytidae). Annals of the Entomological Society of America 62: 1495–6CrossRefGoogle ScholarPubMed
Bhakthan, N.M.G., Borden, J.H., Nair, K.K. 1970. Fine structure of degenerating and regenerating flight muscles in a bark beetle, Ips confusus. Journal of Cell Science 6: 807–20CrossRefGoogle Scholar
Birgersson, G., Schlyter, F., Bergström, G., Löfqvist, J. 1988. Individual variation in aggregation pheromone content of the bark beetle, Ips typographus. Journal of Chemical Ecology 14: 1737–61CrossRefGoogle ScholarPubMed
Birgersson, G., Byers, J.A., Bergström, G., Löfqvist, J. 1990. Production of pheromone components, chalcogran and methyl (E, Z)-2,4-decadienoate, in the spruce engraver Pityogenes chalcographus. Journal of Insect Physiology 36: 391–5Google Scholar
Birgersson, G., DeBarr, G.L., DeGroot, P., Dalusky, M.J., Pierce, H.D. Jr, Borden, J.H., Meyer, H., Francke, W., Espelie, K.E., Berisford, C.W. 1995. Pheromones in (THE) white pine cone beetle, Conophthorus coniperda (Schwarz) (Coleoptera: Scolytidae). Journal of Chemical Ecology 21: 143–67CrossRefGoogle Scholar
Birgersson, G., Dalusky, M.J., Berisford, C.W. 2000. Identification of an aggregation pheromone for Pityogenes hopkinsi (Coleoptera: Scolytidae). The Canadian Entomologist 132: 951–63CrossRefGoogle Scholar
Biswas, C., Johri, B.M. 1997. The gymnosperms. Berlin: Springer-VerlagCrossRefGoogle Scholar
Blackman, M.W. 1922. Mississippi bark beetles. Mississippi Agricultural Experiment Station Technical Bulletin 11Google Scholar
Blight, M.M., Wadhams, L.J., Wenham, M.J. 1979. Chemically mediated behavior in the large elm bark beetle, Scolytus scolytus. Bulletin of the Entomological Society of America 25: 122–4CrossRefGoogle Scholar
Bohlmann, J., Croteau, R. 1999. Diversity and variability of terpenoid defences in conifers: molecular genetics, biochemistry and evolution of the terpene synthase gene family in grand fir (Abies grandis). Novartis Foundation Symposium Series 223: 132–49Google ScholarPubMed
Bohlmann, J., Steele, C.L., Croteau, R. 1997. Monoterpene synthases from grand fir (Abies grandis): cDNA isolation, characterization and functional expression of myrcene synthase, (—)-(4S)-limonene synthase, and (—)-(1S,5S)-pinene synthase. Journal of Biological Chemistry 272: 21 784–92CrossRefGoogle Scholar
Bohlmann, J., Meyer-Gauen, G., Croteau, R. 1998 a. Plant terpenoid synthases: molecular biology and phylogenetic analysis. Proceedings of the National Academy of Sciences of the USA 95: 4126–33CrossRefGoogle ScholarPubMed
Bohlmann, J., Crock, J., Jetter, R., Croteau, R. 1998 b. Terpenoid-based defences in conifers: cDNA cloning, characterization, and functional expression of wound-inducible (E)-bisabolene synthase from grand fir (Abies grandis). Proceedings of the National Academy of Sciences of the USA 95: 6756–61CrossRefGoogle ScholarPubMed
Bohlmann, J., Phillips, M., Ramachandiran, V., Katoh, S., Croteau, R. 1999. cDNA cloning, characterization and functional expression of four new members of the Tpsd gene family from grand fir (Abies grandis). Archives of Biochemistry and Biophysics 368: 232–43Google Scholar
Bohlmann, J., Gershenzon, J., Aubourg, S. 2000. Biochemical, molecular genetic, and evolutionary aspects of defence-related terpenoids in conifers. Recent Advances in Phytochemistry 34: 109–49CrossRefGoogle Scholar
Borden, J.H. 1967. Factors influencing the response of Ips confusus (Coleoptera: Scolytidae) to male attractant. The Canadian Entomologist 99: 1164–93CrossRefGoogle Scholar
Borden, J.H. 1982. Aggregation pheromones. pp. 74139in Mitton, J.B., Sturgeon, K.B. (Eds), Bark beetles in North American conifers. Austin: University of Texas PressGoogle Scholar
Borden, J.H. 1985. Aggregation pheromones. pp. 257–85 in Kerkut, G.A., Gilbert, L.I. (Eds), Comprehensive insect physiology, biochemistry, and pharmacology. Vol. 9. Oxford: Pergamon PressGoogle Scholar
Borden, J.H. 1992. What we don't know about semiochemical-based communications in Dendroctonus, Ips, Trypodendron, Scolytus, Dryocoetes, Pseudohylesinus, Pityophthorus, Pityokteines, Leperisinus, Pityogenes, Hylastes, Phloesinus, Hylurgopinus, Carphoborus, Polygraphus, Ad Infinitum. p. 112in DC Allen, LP Abrahamson (Eds), Proceedings of the North American Forest Insect Work Conference, 25–28 March 1991, Denver. US Forest Service Pacific Northwest Research Station General Technical Report PNW–GTR–294Google Scholar
Borden, J.H., Slater, C.E. 1968. Induction of flight muscle degeneration by synthetic juvenile hormone in Ips confusus (Coleoptera: Scolytidae), Zeitschrift für Vergleichende Physiologie 63: 366–8CrossRefGoogle Scholar
Borden, J.H., Slater, C.E. 1969 a. Flight muscle volume change in Ips confusus (Coleoptera: Scolytidae). Canadian Journal of Zoology 47: 2932CrossRefGoogle Scholar
Borden, J.H., Slater, C.E. 1969 b. Sex pheromone of Trypodendron lineatum: production in the female hindgut – Malpighian tubule region. Annals of the Entomological Society America 62: 454–5Google Scholar
Borden, J.H., Nair, K.K., Slater, C.E. 1969. Synthetic juvenile hormone: induction of sex pheromone production in Ips confusus. Science (Washington, DC) 166: 1626–7CrossRefGoogle Scholar
Borden, J.H., Pierce, A.M., Pierce, H.D. Jr, Chong, L.J., Stock, A.J., Oehlshlager, A.C. 1987. Semiochemicals produced by western balsam bark beetle, Dryocoetes confusus Swaine (Coleoptera: Scolytidae). Journal of Chemical Ecology 13: 823–36CrossRefGoogle ScholarPubMed
Borden, J.H., Chong, L.J., Lindgren, B.S. 1990. Redundancy in the semiochemical message required to induce attack on lodgepole pines by the mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Scolytidae). The Canadian Entomologist 122: 769–78CrossRefGoogle Scholar
Bouvier, F., d'Harlingue, A., Suire, C., Backhaus, R.A., Camara, B. 1998. Dedicated roles of plastid transketolases during the early onset of isoprenoid biogenesis in pepper fruits. Plant Physiology 117: 1423–31CrossRefGoogle Scholar
Bowers, W.S. 1991. Insect hormones and anti-hormones. pp. 431–56 in Rosenthal, G.A., Berenbaum, M.R. (Eds), Herbivores: their interactions with secondary plant metabolites. Vol. 1. San Diego: Academic PressCrossRefGoogle Scholar
Bowers, W.W., Borden, J.H. 1990. Evidence for a male-produced aggregation pheromone in the four-eyed spruce bark beetle, Polygraphus rufipennis (Kirby) (Col., Scolytidae). Journal of Applied Entomology 110: 292–9CrossRefGoogle Scholar
Bowers, W.W., Gries, G., Borden, J.H., Pierce, H.D. Jr. 1991. 3-Methyl-3-buten-1-ol: an aggregation pheromone of the four-eyed spruce bark beetle, Polygraphus rufipennis (Coleoptera: Scolytidae). Journal of Chemical Ecology 17: 19892002Google Scholar
Brand, J.M., Bracke, J.W., Markovetz, A.J., Wood, D.L., Browne, L.E. 1975. Production of verbenol pheromone by a bacterium isolated from bark beetles. Nature (London) 254: 136–7CrossRefGoogle ScholarPubMed
Brand, J.M., Bracke, J.W., Britton, L.N., Markovetz, A.J., Barras, S.J. 1976. Bark beetle pheromones: production of verbenone by a mycangial fungus of Dendroctonus frontalis. Journal of Chemical Ecology 2: 195–9CrossRefGoogle Scholar
Bridges, J.R. 1982. Effects of juvenile hormone on pheromone synthesis in Dendroctonus frontalis. Environmental Entomology 11: 417–20CrossRefGoogle Scholar
Bright, D.E. 1976. The insects and arachnids of Canada. Part 2: The bark beetles of Canada and Alaska, Coleoptera: Scolytidae. Canada Department of Agriculture Publication 1576Google Scholar
Bright, D.E. 1993. Systematics of bark beetles. pp. 2336in Schowalter, T.D., Filip, G.M. (Eds), Beetle–pathogen interactions in conifer forests. London: Academic PressGoogle Scholar
Bright, D.E., Poinar, G.O. Jr. 1994. Scolytidae and Platypodidae (Coleoptera) from Dominican Republic amber. Annals of the Entomological Society of America 87: 170–94CrossRefGoogle Scholar
Brooks, J.E., Borden, J.H., Pierce, H.D. Jr. 1987 a. Foliar and cortical monoterpenes in Sitka spruce: potential indicators of resistance to the white pine weevil, Pissodes strobi Peck (Coleoptera: Curculionidae). Canadian Journal of Forest Research 17: 740–5Google Scholar
Brooks, J.E., Borden, J.H., Pierce, H.D. Jr, Lister, G.R. 1987 b. Seasonal variation in foliar and bud monoterpenes in Sitka spruce. Canadian Journal of Botany 65: 1249–52Google Scholar
Burke, C.C., Wildung, M.R., Croteau, R. 1999. Geranyl diphosphate synthase: cloning, expression, and characterization of the prenyltransferase as a heterodimer. Proceedings of the National Academy of Sciences of the USA 96: 13 062 – 7CrossRefGoogle ScholarPubMed
Byers, J.A. 1981. Pheromone biosynthesis in the bark beetle, Ips paraconfusus, during feeding or exposure to vapours of host plant precursors. Insect Biochemistry 11: 563–9CrossRefGoogle Scholar
Byers, J.A. 1983 a. Bark beetle conversion of a plant compound to a sex-specific inhibitor of pheromone attraction. Science (Washington, DC) 220: 624–6Google Scholar
Byers, J.A. 1983 b. Influence of sex, maturity and host substances on pheromones in the guts of the bark beetles, Ips paraconfusus and Dendroctonus brevicomis. Journal of Insect Physiology 29: 513CrossRefGoogle Scholar
Byers, J.A. 1989. Chemical ecology of bark beetles. Experientia 45: 271283Google Scholar
Byers, J.A. 1992. Attraction of bark beetles, Tomicus piniperda, Hylurgops palliatus, and Trypodendron domesticum, and other insects to short-chain alcohols and monoterpenes. Journal of Chemical Ecology 18: 2385–402CrossRefGoogle Scholar
Byers, J.A. 1995. Host-tree chemistry affecting colonization in bark beetles. pp. 154213in Cardé, R.T., Bell, W.J. (Eds), Chemical ecology of insects 2. New York: Chapman and HallGoogle Scholar
Byers, J.A. 1996. An encounter rate model of bark beetle populations searching at random for susceptible host trees. Ecological Modelling 91: 5766CrossRefGoogle Scholar
Byers, J.A., Birgersson, G. 1990. Pheromone production in a bark beetle independent of myrcene precursor in host pine species. Naturwissenschaften 77: 385–7CrossRefGoogle Scholar
Byers, J.A., Wood, D.L. 1981. Antibiotic-induced inhibition of pheromone synthesis in a bark beetle. Science (Washington, DC) 213: 763–4CrossRefGoogle Scholar
Byers, J.A., Wood, D.L., Browne, L.E., Fish, R.H., Piatek, B., Hendry, L.B. 1979. Relationship between a host plant compound, myrcene, and pheromone production in the bark beetle, Ips paraconfusus. Journal of Insect Physiology 25: 477–82CrossRefGoogle Scholar
Byers, J.A., Lanne, B.S., Löfqvist, J., Schlyter, F., Bergström, G. 1985. Olfactory recognition of host-tree susceptibility by pine shoot beetles. Naturwissenschaften 72: 324–6CrossRefGoogle Scholar
Byers, J.A., Schlyter, F., Birgersson, G., Francke, W. 1990. E-Myrcenol in Ips duplicatus: an aggregation pheromone component new for bark beetles. Experientia 46: 1209–11Google Scholar
Byers, J.A., Zhang, Q-H, Schlyter, F., Birgersson, G. 1998. Volatiles from nonhost birch trees inhibit pheromone response in spruce bark beetles. Naturwissenschaften 85: 557–61CrossRefGoogle Scholar
Camacho, A.D., Borden, J.H. 1994. Responses of the western balsam bark beetle, Dryocoetes confusus Swaine (Coleoptera: Scolytidae) to host trees baited with enantiospecific blends of exo- and endo-brevicomin. The Canadian Entomologist 126: 43–8Google Scholar
Camacho, A.D., Pierce, H.D. Jr, Borden, J.H. 1993. Geometrical and optical isomerism of pheromones in two sympatric Dryocoetes spp. (Coleoptera: Scolytidae), mediates species specificity and response level. Journal of Chemical Ecology 19: 2169–82CrossRefGoogle Scholar
Camacho, A.D., Pierce, H.D. Jr, Borden, J.H. 1994. Aggregation pheromones in Dryocoetes affaber (Mann.) (Coleoptera: Scolytidae): stereoisomerism and species specificity. Journal of Chemical Ecology 20: 111–24Google Scholar
Camacho, A.D., Pierce, H.D. Jr, Borden, J.H. 1998. Host compounds as kairomones for the western balsam bark beetle Dryocoetes confusus Sw. (Col., Scolytidae). Journal of Applied Entomology 122: 287–93Google Scholar
Cane, D.E. 1999. Sesquiterpene biosynthesis: cyclization mechanisms. pp. 154200in Cane, D.E. (Ed), Comprehensive natural products chemistry. Vol 2: Isoprenoids including carotenoids and steroids. Oxford: PergamonGoogle Scholar
Charles, J-P, Wojtasek, H., Lentz, A.J., Thomas, B.A., Bonning, B.C., Palli, S.R., Parker, A.G., Dorman, G., Hammock, B.D., Prestwich, G.D., Riddiford, L.M. 1996. Purification and reassessment of ligand binding by the recombinant, putative juvenile hormone receptor of the tobacco hornworm. Archives of Insect Biochemistry and Physiology 31: 371–933.0.CO;2-Z>CrossRefGoogle Scholar
Charon, L., Pale-Grosdemange, C., Rohmer, M. 1999. On the reduction steps in the mevalonate independent 2-C-methyl-D-erythrithol 4-phosphate (MEP) pathway for isoprenoid biosynthesis in the bacterium Zymomonas mobilis. Tetrahedron Letters 40: 7231–4Google Scholar
Chen, N.M., Borden, J.H., Pierce, H.D. Jr. 1988. Effect of juvenile hormone analog, fenoxycarb, on pheromone production by Ips paraconfusus (Coleoptera: Scolytidae). Journal of Chemical Ecology 14: 1087–98Google Scholar
Cheniclet, C. 1987. Effects of wounding and fungus inoculation on terpene producing systems of maritime pine. Journal of Experimental Botany 38: 1557–72Google Scholar
Conn, J.E., Borden, J.H., DWA, Hunt, Holman, J., Whitney, H.S., Spanier, O.J., Pierce, H.D. Jr, Oehlschlager, A.C. 1984. Pheromone production by axenically reared Dendroctonus ponderosae and Ips paraconfusus (Coleoptera: Scolytidae). Journal of Chemical Ecology 10: 281–90CrossRefGoogle ScholarPubMed
Connolly, J.D., Hill, R.A. 1991. Dictionary of terpenoids. London: Chapman and HallCrossRefGoogle Scholar
Cool, L.G., Zavarin, E. 1992. Terpene variability of mainland Pinus radiata. Biochemical Systematics and Ecology 20: 133–44CrossRefGoogle Scholar
Cool, L.G., Power, A.B., Zavarin, E. 1991. Variability of foliage terpenes of Fitzroya cupressoides. Biochemical Systematics and Ecology 19: 421–32Google Scholar
Coyne, J.F., Lott, L.H. 1976. Toxicity of substances in pine oleoresin to southern pine beetle. Journal of the Georgia Entomological Society 11: 301–5Google Scholar
Critchfield, W.B., Little, E.L. Jr. 1966. Geographic distribution of the pines of the world. US Department of Agriculture Miscellaneous Publication 991Google Scholar
Croteau, R. 1981. Biosynthesis of monoterpenes. pp. 225–82 in Porter, J.W., Spurgeon, S.L. (Eds), Biosynthesis of isoprenoid compounds. Vol. 1. New York: John Wiley and SonsGoogle Scholar
Croteau, R. 1987. Biosynthesis and catabolism of monoterpenoids. Chemical Reviews 87: 929–54CrossRefGoogle Scholar
Crowson, R.A. 1981. The biology of the Coleoptera. London: Academic PressGoogle Scholar
Dallara, P.L., Seybold, S.J., Meyer, H., Tolasch, T., Francke, W., Wood, D.L. 2000. Semiochemicals from three species of Pityophthorus (Coleoptera: Scolytidae): identification and field response. The Canadian Entomologist 132: 889906CrossRefGoogle Scholar
de Groot, P., DeBarr, G.L. 2000. Response of cone and twig beetles (Coleoptera: Scolytidae) and a predator (Coleoptera: Cleridae) to pityol, conophthorin, and verbenone. The Canadian Entomologist 132: 843–51Google Scholar
de Groot, P., DeBarr, G.L., Birgersson, G., Pierce, H.D., Borden, J.H., Berisford, Y.C., Berisford, C.W. 1991. Evidence for a female-produced pheromone in the white pine cone beetle, Conophthorus coniperda, and in the red pine cone beetle, Conophthorus resinosae (Coleoptera: Scolytidae). The Canadian Entomologist 123: 1057–64CrossRefGoogle Scholar
Drooz, A.T. 1985. Insects of eastern forests. US Department of Agriculture Miscellaneous Publication 1426Google Scholar
Ehrlich, P.R., Raven, P. 1965. Butterflies and plants: a study in coevolution. Evolution 18: 586608Google Scholar
Eisenreich, W., Menhard, B., Hylands, P., Zenk, M.H., Bacher, A. 1996. Studies on the biosynthesis of taxol: the taxane carbon skeleton is not of mevalonoid origin. Proceedings of the National Academy Sciences of the USA 93: 6431–6Google Scholar
Eisenreich, W., Sagner, S., Zenk, M.H., Bacher, A. 1997. Monoterpenoid essential oils are not of mevalonoid origin. Tetrahedron Letters 38: 3889–92Google Scholar
Eisenreich, W., Schwarz, M., Cartayrade, A., Arigoni, D., Zenk, M.H., Bacher, A. 1998. The deoxyxylulose phosphate pathway of terpenoid biosynthesis in plants and microorganisms. Chemistry and Biology 5: R22133CrossRefGoogle ScholarPubMed
Elias, S.A. 1992. Late Quaternary beetle faunas of southeastern Alaska: evidence of a refugium for mesic and hydrophilous species. Arctic and Alpine Research 24: 133–44CrossRefGoogle Scholar
Erbilgin, N., Raffa, K.F. 2000. Opposing effects of host monoterpenes on responses by two sympatric species of bark beetles to their aggregation pheromones. Journal of Chemical Ecology 26: 2527–48Google Scholar
Erbilgin, N., Raffa, K.F. 2001. Plasticity in the attraction of predators to pheromones of two prey species: stereochemistry of plant volatiles can modulate search behavior. Oecologia. In pressGoogle Scholar
Fahn, A. 1979. Secretory tissues in plants. New York: Academic PressGoogle Scholar
Fatzinger, C.W., Siegfried, B.D., Wilkinson, R.W., Nation, J.L. 1987. trans-Verbenol, turpentine, and ethanol as trap baits for the black turpentine beetle, Dendroctonus terebrans, and other forest Coleoptera in north Florida. Journal of Entomological Science 22: 201–9CrossRefGoogle Scholar
Feyereisen, R. 1985. Regulation of juvenile hormone titre: synthesis. pp. 391429in Kerkut, G.A., Gilbert, LI. (Eds), Comprehensive insect physiology biochemistry and pharmacology. Oxford: Pergamon PressGoogle Scholar
Fish, R.H., Browne, L.E., Wood, D.L., Hendry, L.B. 1979. Pheromone biosynthetic pathways: Conversions of deuterium labelled ipsdienol with sexual and enantioselectivity in Ips paraconfusus Lanier. Tetrahedron Letters 17: 1465–8CrossRefGoogle Scholar
Fish, R.H., Browne, L.E., Bergot, B.J. 1984. Pheromone biosynthetic pathways: conversion of ipsdienone to (—)-ipsdienol, a mechanism for enantioselective reduction in the male bark beetle, Ips paraconfusus. Journal of Chemical Ecology 10: 1057–64Google Scholar
Francke, W. 1980. The pheromone bouquet of Ips amitinus. Naturwissenschaften 67: 147–8CrossRefGoogle Scholar
Francke, W. 1986. Convergency and diversity in multicomponent insect pheromones. pp. 327–36 in Porchet, M., Andries, J-C, Dhainaut, A. (Eds), Advances in invertebrate reproduction 4. Amsterdam: Elsevier Science PublishersGoogle Scholar
Francke, W., Vité, J.P. 1983. Oxygenated terpenes in pheromone systems of bark beetles. Zeitschrift für Angewandte Entomologie 96: 146–56CrossRefGoogle Scholar
Francke, W., Schulz, S. 1999. Pheromones. pp. 197261in Barton, D., Nakanishi, K., Meth-Cohn, O. (Eds), Natural products. Vol. 8 (including marine natural products, pheromones, plant hormones and aspects of ecology). Oxford: Elsevier Science Ltd.Google Scholar
Francke, W., Pan, M.L., Bartels, J., König, W.A., Vité, J.P., Krawielitzki, S., Kohnle, U. 1986. The odor bouquet of three pine engraver beetles (Ips spp.). Zeitschrift für Angewandte Entomologie 101: 453–61Google Scholar
Francke, W., Pan, M.L., König, W.A., Mori, K., Puapoomachareon, P., Heuer, H., Vité, J.P. 1987. Identification of “pityol” and “grandisol” as pheromone components of the bark beetle, Pityophthorus pityographus. Naturwissenschaften 74: 343–5CrossRefGoogle Scholar
Francke, W., Bartels, J., Meyer, H., Schröder, F., Kohnle, U., Baader, E., and Vité, J.P. 1995. Semiochemicals from bark beetles: new results, remarks, and reflections. Journal of Chemical Ecology 21: 1043–63Google Scholar
Francke, W., Schröder, F., Phillipp, P., Meyer, H., Sinnwell, V., Gries, G. 1996. Identification and synthesis of new bicyclic acetals from the mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Scolytidae). Bioorganic and Medicinal Chemistry 4: 363–74CrossRefGoogle Scholar
Funk, C., Croteau, R. 1994. Diterpenoid resin acid biosynthesis in conifers: characterization of two cytochrome P450-dependent monooxygenases and an aldehyde dehydrogenase involved in abietic acid biosynthesis. Archives of Biochemistry and Biophysics 308: 258–66Google Scholar
Funk, C., Lewinsohn, E., Stofer Vogel, B., Steele, C.L., Croteau, R. 1994. Regulation of oleoresinosis in grand fir (Abies grandis). Plant Physiology 106: 9991005CrossRefGoogle ScholarPubMed
Furniss, R.L., Carolin, V.M. 1992. Western forest insects. US Department of Agriculture Miscellaneous Publication 1339Google Scholar
Gerken, B., Grüne, S. 1978. Zur biologischen bedeutung käfereigener duftstoffe des großen ulmensplintkäfers, Scolytus Scolytus F. (Col. Scolytidae). Mitteilungen der Deutschen Gesellschaft für Allgemeine und Angewandte Entomologie 1: 3841Google Scholar
Gershenzon, J. 1994. Metabolic costs of terpenoid accumulation in higher plants. Journal of Chemical Ecology 20: 1281–328CrossRefGoogle ScholarPubMed
Gershenzon, J., Croteau, R. 1991. Terpenoids. pp. 165219in Rosenthal, G.A., Berenbaum, M.R. (Eds), Herbivores: their interaction with secondary plant metabolites. Vol. 1. San Diego: Academic PressCrossRefGoogle Scholar
Gershenzon, J., Croteau, R. 1993. Terpenoid biosynthesis: the basic pathway and formation of monoterpenes, sesquiterpenes, and diterpenes. pp. 339–88 in Moore, T.S. Jr (Ed), Lipid metabolism in plants. Boca Raton: CRC PressGoogle Scholar
Gershenzon, J., Kreis, W. 1999. Biochemistry of terpenoids: monoterpenes, sesquiterpenes, diterpenes, sterols, cardiac glycosides and steroid saponins. Annual Plant Reviews 4: 222–99Google Scholar
Giesen, H., Kohnle, U., Vité, J.P., Pan, M-L, Francke, W. 1984. Das Aggregationspheromon des mediterranen Kiefernborkenkäfers Ips (Orthotomicus) erosus. Zeitschrift der Angewandten Entomologie 98: 95–7Google Scholar
Gijzen, M., Lewinsohn, E., Croteau, R. 1991. Characterization of the constitutive and wound-inducible monoterpene cyclases of grand fir (Abies grandis). Archives of Biochemistry and Biophysics 289: 267–73CrossRefGoogle ScholarPubMed
Gijzen, M., Lewinsohn, E., Croteau, R. 1992. Antigenic cross-reactivity among monoterpene cyclases from grand fir and induction of these enzymes upon stem wounding. Archives of Biochemistry and Biophysics 294: 670–4CrossRefGoogle ScholarPubMed
Gijzen, M., Lewinsohn, E., Savage, T.J., Croteau, R. 1993. Conifer monoterpenes. ACS Symposium Series 525: 822CrossRefGoogle Scholar
Gmelin, J.F. 1787. Abhandlung über die Wurmtrocknis. Leipzig: CrusiusCrossRefGoogle Scholar
Goldstein, D.B., Holsinger, K.E. 1992. Maintenance of polygenic variation in spatially structured populations: roles for local mating and genetic redundancy. Evolution 46: 412–29Google Scholar
Goldstein, J.L., Brown, M.S. 1990. Regulation of the mevalonate pathway. Nature (London) 343: 425–30CrossRefGoogle ScholarPubMed
Gore, W.E., Pearce, G.T., Lanier, G.N., Simeone, J.B., Silverstein, R.M., Peacock, J.W., Cuthbert, R.A. 1977. Aggregation attractant of the European elm bark beetle, Scolytus multistriatus, production of individual components and related aggregation behavior. Journal of Chemical Ecology 3: 429–46Google Scholar
Graham, K. 1968. Anaerobic induction of chemical attractancy for ambrosia beetles. Canadian Journal of Zoology 46: 905–8CrossRefGoogle Scholar
Gries, G., Pierce, H.D. Jr, Lindgren, B.S., Borden, J.H. 1988. New techniques for capturing and analyzing semiochemicals for scolytid beetles (Coleoptera: Scolytidae). Journal of Economic Entomology 81: 1715–20Google Scholar
Gries, G., Leufvén, A., LaFontaine, J.P., Pierce, H.D. Jr, Borden, J.H., Vanderwel, D., Oehlschlager, A.C. 1990 a. New metabolites of α-pinene produced by the mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Scolytidae). Insect Biochemistry 20: 365–71CrossRefGoogle Scholar
Gries, G., Smirle, M.J., Leufvén, A., Miller, D.R., Borden, J.H., Whitney, H.S. 1990 b. Conversion of phenylalanine to toluene and 2-phenylethanol by the pine engraver Ips pini (Say) (Coleoptera: Scolytidae). Experientia 46: 329–31Google Scholar
Grosman, D.M. 1996. Southern pine beetle, Dendroctonus frontalis Zimmermann (Coleoptera: Scolytidae): quantitative analysis of chiral semiochemicals. Ph.D. thesis, Virginia Polytechnical Institute, BlacksburgGoogle Scholar
Hackstein, E., Vité, J.P. 1978. Pheromone Biosynthese und Reizkette in der Besiedlung von Fichten durch den Buchdrucker Ips typographus. Mitteilungen der Deutschen Gesellschaft für Allemeine und Angewandte Entomologie 1: 185–8Google Scholar
Hampton, R., Dimster-Denk, D., and Rine, J. 1996. The biology of HMG-CoA reductase: the pros of contraregulation. Topics in Biological Sciences 21: 140–5Google Scholar
Harley, P., Fridd-Stroud, V., Greenberg, J., Guenther, A., Vasconcellos, P. 1998. Emission of 2-methyl-3-buten-2-ol by pines: a potentially large natural source of reactive carbon to the atmosphere. Journal of Geophysical Research 103: 25 479 – 86Google Scholar
Harring, C.M. 1978. Aggregation pheromones of the European fir engraver beetles Pityokteines curvidens, P. spinidens, and P. vorontzovi and the role of juvenile hormone in pheromone biosynthesis. Zeitschrift für Angewandte Entomologie 85: 281317CrossRefGoogle Scholar
Harris, L.J., Borden, J.H., Pierce, H.D. Jr, Oehlschlager, A.C. 1983. Cortical resin monoterpenes in Sitka spruce and resistance to the white pine weevil, Pissodes strobi (Coleoptera: Curculionidae). Canadian Journal of Forest Research 13: 350–2Google Scholar
Hefner, J., Ketchun, R.E.B., Croteau, R. 1998. Cloning and functional expression of a cDNA encoding geranylgeranyl diphosphate synthase from Taxus canadensis and assessment of the role of this prenyltransferase in cells induced for taxol production. Archives of Biochemistry and Biophysics 360: 6274Google Scholar
Heinz, D.W., Baase, W.A., Matthews, B.W. 1992. Folding and function of the T4 lysozyme containing 10 consecutive alanines illustrates the redundancy of information in an amino acid sequence. Proceedings of the National Academy of Sciences of the USA 89: 3751–5Google Scholar
Hendry, L.B., Piatek, B., Browne, L.E., Wood, D.L., Byers, J.A., Fish, R.H., Hicks, R.A. 1980. In vivo conversion of a labelled host plant chemical to pheromones of the bark beetle, Ips paraconfusus. Nature (London) 284: 485Google Scholar
Henrich, V.C., Brown, N.E. 1995. Insect nuclear receptors: a developmental and comparative perspective. Insect Biochemistry and Molecular Biology 25: 881–97CrossRefGoogle ScholarPubMed
Hezari, M., Lewis, N.G., Croteau, R. 1995. Purification and characterization of taxa-4(5),11(12)-diene synthase from pacific yew (Taxus brevifolia) that catalyzes the first committed step of taxol biosynthesis. Archives of Biochemistry and Biophysics 322: 437–44Google Scholar
Hezari, M., Ketchun, R.E.B., Gibson, D.M., Croteau, R. 1997. Taxol production and taxadiene synthase activity in Taxus canadensis cell suspension cultures. Archives of Biochemistry and Biophysics 337: 185–90Google Scholar
Himejima, M., Hobson, K.R., Ohtsuka, T., Wood, D.L., Kubo, I. 1992. Antimicrobial terpenes from oleoresin of ponderosa pine tree Pinus ponderosa: a defence mechanism against microbial invasion. Journal of Chemical Ecology 18: 1809–18Google Scholar
Hobson, K.R., Wood, D.L., Cool, L.G., White, P.M., Ohtsuka, T., Kubo, I., Zavarin, E. 1993. Chiral specificity in responses by the bark beetle Dendroctonus valens to host kairomones. Journal of Chemical Ecology 19: 1837–46Google Scholar
Hodges, J.D., Elam, W.W., Watson, W.F., Nebeker, T.E. 1979. Oleoresin characteristics and susceptibility of four southern pines to southern pine beetle (Coleoptera: Scolytidae) attacks. The Canadian Entomologist 111: 889–96Google Scholar
Hopkins, A.D. 1892. Notes on a destructive forest-tree scolytid. Science (Washington, DC) 20: 64–5CrossRefGoogle ScholarPubMed
Hopkins, A.D. 1899. Preliminary report on the insect enemies of forests of the northwest. US Department of Agriculture Division of Entomology Bulletin 21Google Scholar
Hopkins, A.D. 1901. Insect enemies of the spruce in the northeast. US Department of Agriculture Division of Entomology Bulletin 28Google Scholar
Hopkins, A.D. 1902. Insect enemies of the pine in the Black Hills Forest Preserve. US Department of Agriculture Division of Entomology Bulletin 32Google Scholar
Huber, D.P.W., Gries, R., Borden, J.H., Pierce, H.D. Jr. 1999. Two pheromones of coniferophagous bark beetles found in the bark of nonhost angiosperms. Journal of Chemical Ecology 25: 805–16CrossRefGoogle Scholar
Hughes, P.R. 1973 a. Dendroctonus, production of pheromones and related compounds in response to host monoterpenes. Zeitschrift für Angewandte Entomologie 73: 294312Google Scholar
Hughes, P.R. 1973 b. Effect of α-pinene exposure on trans-verbenol synthesis in Dendroctonus ponderosae Hopk. Naturwissenschaften 60: 261–2Google Scholar
Hughes, P.R. 1974. Myrcene: a precursor of pheromones in Ips beetles. Journal of Insect Physiology 20: 1271–5CrossRefGoogle ScholarPubMed
Hughes, P.R., Renwick, J.A.A. 1977 a. Hormonal and host factors stimulating pheromone synthesis in female western pine beetles, Dendroctonus brevicomis. Physiological Entomology 2: 289–92CrossRefGoogle Scholar
Hughes, P.R., Renwick, J.A.A. 1977 b. Neural and hormonal control of pheromone biosynthesis in the bark beetle, Ips paraconfusus. Physiological Entomology 2: 117–23CrossRefGoogle Scholar
Hunt, D.W.A., Borden, J.H. 1989 a. Conversion of verbenols to verbenone by yeasts isolated from Dendroctonus ponderosae (Coleoptera: Scolytidae). Journal of Chemical Ecology 16: 1385–97Google Scholar
Hunt, D.W.A., Borden, J.H. 1989 b. Terpene alcohol pheromone production by Dendroctonus ponderosae and Ips paraconfusus (Coleoptera: Scolytidae) in the absence of readily culturable microorganisms. Journal of Chemical Ecology 15: 1433–63Google Scholar
Hunt, D.W.A., Smirle, M.J. 1988. Partial inhibition of pheromone production in Dendroctonus ponderosae (Coleoptera: Scolytidae) by polysubstrate monooxygenase inhibitors. Journal of Chemical Ecology 14: 529–36Google Scholar
Hunt, D.W.A., Borden, J.H., Lindgren, B.S., Gries, G. 1989. The role of autooxidation of α-pinene in the production of pheromones of Dendroctonus ponderosae (Coleoptera: Scolytidae). Canadian Journal of Forest Research 19: 1275–82Google Scholar
Hynum, B.G., Berryman, A.A. 1980. Dendroctonus ponderosae (Coleoptera: Scolytidae): pre-aggregation landing and gallery initiation on lodgepole pine. The Canadian Entomologist 112: 185–91CrossRefGoogle Scholar
Ivarsson, P., Birgersson, G. 1995. Regulation and biosynthesis of pheromone components in the double spined bark beetle Ips duplicatus (Coleoptera: Scolytidae). Journal of Insect Physiology 41: 843–9Google Scholar
Ivarsson, P., Schlyter, F., Birgersson, G. 1993. Demonstration of de novo pheromone biosynthesis in Ips duplicatus (Coleoptera: Scolytidae): inhibition of ipsdienol and E-myrcenol production by compactin. Insect Biochemistry and Molecular Biology 23: 655–62Google Scholar
Ivarsson, P., Blomquist, G.J., Seybold, S.J. 1997. In vitro production of the pheromone intermediates ipsdienone and ipsenone by the bark beetles Ips pini (Say) and I. paraconfusus Lanier (Coleoptera: Scolytidae). Naturwissenschaften 84: 454–7Google Scholar
Ivarsson, P., Tittiger, C., Blomquist, C., Borgeson, C.E., Seybold, S.J., Blomquist, G.J., Hogberg, H-E. 1998. Pheromone precursor synthesis is localized in the metathorax of Ips paraconfusus Lanier (Coleoptera: Scolytidae). Naturwissenschaften 85: 507–11Google Scholar
Johnson, M.A., Croteau, R. 1987. Biochemistry of conifer resistance to bark beetles and their fungal symbionts. ACS Symposium Series 325: 6791Google Scholar
Jones, G. 1995. Molecular mechanisms of action of juvenile hormone. Annual Review of Entomology 40: 147–69Google Scholar
Jones, G., Sharp, P.A. 1997. Ultraspiracle: an invertebrate nuclear receptor for juvenile hormones. Proceedings of the National Academy of Sciences of the USA 94: 13 499503CrossRefGoogle ScholarPubMed
Katoh, S., Croteau, R. 1998. Individual variation in constitutive and induced monoterpene biosynthesis in grand fir. Phytochemistry 47: 577–82CrossRefGoogle Scholar
Kiehlmann, E., Conn, J.E., Borden, J.H. 1982. 7-Ethoxy-6-methoxy-2,2-dimethyl-2H-1-benzopyran. Organic Preparations and Procedures International 14: 337Google Scholar
Kirkendall, L.R. 1983. The evolution of mating systems in bark and ambrosia beetles (Coleoptera: Scolytidae and Platypodidae). Zoological Journal of the Linnean Society 77: 293352Google Scholar
Kirkendall, L.R., Kent, D.S., Raffa, K.F. 1997. Interactions among males, females and offspring in bark and ambrosia beetles: the significance of living in tunnels for the evolution of social behavior. pp. 181215in Choe, J.C., Crespi, B.J. (Eds), The evolution of social behavior in insects and arachnids. Cambridge: Cambridge University PressGoogle Scholar
Klimetzek, D., Francke, W. 1980. Relationship between enantiomeric composition of α-pinene in host trees and the production of verbenols in Ips species. Experientia 36: 1343–4Google Scholar
Klimetzek, D., Vité, J.P. 1986. Die Wirkung insektenbürtiger Duftstoffe auf das Aggregationsverhalten des Mediterranen Kiefemborkenkäfers Orthotomicus erosus. Journal of Applied Entomology 101: 239–43CrossRefGoogle Scholar
Klimetzek, D., Kohler, J., Vité, J.P., Kohnle, U. 1986. Dosage response to ethanol mediates host selection by “secondary” bark beetles. Naturwissenschaften 73: 270–2CrossRefGoogle Scholar
Koepp, A.E., Hezari, M., Zajicek, J., Stofer Vogel, B., LaFever, R.E., Lewis, N.G., Croteau, R. 1995. Cyclization of geranylgeranyl diphosphate to taxa-4(5),11(12)-diene is the committed step of taxol biosynthesis in Pacific yew. Journal of Biological Chemistry 270: 8686–90Google Scholar
Kohnle, U. 1985. Investigations of chemical communication systems in secondary bark beetles (Coleoptera: Scolytidae). Zeitschrift für Angewandte Entomologie 100: 197218Google Scholar
Kohnle, U., Vité, J.P. 1984. Bicyclic ketals in the chemical communication of European bark beetles. Naturwissenschaften 71: 47–8Google Scholar
Kohnle, U., Francke, W., Bakke, A. 1985. Polygraphus poligraphus (L.): response to enantiomers of beetle specific terpene alcohols and a bicyclic ketal. Journal of Applied Entomology 100: 58Google Scholar
Kohnle, U., Kopp, S., Francke, W. 1986. Inhibition of the attractant pheromone response in Ips acuminatus (Gyll.) by Ips sexdentatus (Boerner) (Coleoptera: Scolytidae). Zeitschrift für Angewandte Entomologie 101: 316–9Google Scholar
Kohnle, U., Schmutzenhofer, H., Bartels, J., Francke, W. 1988 a. Oxygenated terpenes in the chemical communication system of the bark beetle, Ips schmutzenhoferi (Col., Scolytidae), a species recently described from the Southeastern Himalaya. Journal of Applied Entomology 106: 4651CrossRefGoogle Scholar
Kohnle, U., Vité, J.P., Erbacher, J., Bartels, J., Francke, W. 1988 b. Aggregation response of European engraver beetles of the genus Ips mediated by terpenoid pheromones. Entomologia Experimentalis et Applicata 49: 4353Google Scholar
Kohnle, U., Densborn, S., Kölsch, P., Meyer, H., Francke, W. 1992. E-7-Methyl-1,6-dioxaspiro[4.5] decane in the chemical communication of European Scolytidae and Nitidulidae (Coleoptera). Journal of Applied Entomology 114: 187–92Google Scholar
Kohnle, U., Pajares, J.A., Bartels, J., Meyer, H., Francke, W. 1993. Chemical communication in the European pine engraver, Ips mannsfeldi (Wachtl) (Col. Scolytidae). Journal of Applied Entomology 115: 17CrossRefGoogle Scholar
Koyama, T., Ogura, K. 1999. Isopentenyl diphosphate isomerase and prenyltransferase. pp. 6996in Cane, D.E. (Ed), Comprehensive natural products chemistry. Vol 2: isoprenoids including carotenoids and steroids. Oxford: PergamonGoogle Scholar
LaFever, R.F., Stofer Vogel, B., Croteau, R. 1994. Diterpenoid resin acid biosynthesis in conifers: enzymatic cyclization of geranylgeranyl pyrophosphate to abietadiene, the precursor of abietic acid. Archives of Biochemistry and Biophysics 313: 130–49Google Scholar
Lange, B.M., Croteau, R. 1999 a. Isoprenoid biosynthesis via a mevalonate-independent pathway in plants: cloning and heterologous expression of 1-deoxyxylulose-5-phosphate reductoisomerase from peppermint. Archives of Biochemistry and Biophysics 365: 170–4Google Scholar
Lange, B.M., Croteau, R. 1999 b. Isopentenyl diphosphate biosynthesis via a mevalonate-independent pathway: isopentenyl monophosphate kinase catalyzes the terminal enzymatic step. Proceedings of the National Academy of Sciences of the USA 96: 13 714 – 9CrossRefGoogle Scholar
Lange, B.M., Wildung, M.R., McCaskill, D., Croteau, R. 1998. A family of transketolases that directs isoprenoid biosynthesis via a mevalonate-independent pathway. Proceedings of the National Academy of Sciences of the USA 95: 2100–4Google Scholar
Langenheim, J.H. 1994. Higher plant terpenoids: a phytocentric overview of their ecological roles. Journal of Chemical Ecology 20: 1223–80CrossRefGoogle ScholarPubMed
Lanne, B.S., Ivarsson, P., Johnson, P., Bergström, G., Wassren, A.B. 1989. Biosynthesis of 2-methyl-3-buten-2-ol, a pheromone component of Ips typographus (Coleoptera: Scolytidae). Insect Biochemistry 19: 163–8Google Scholar
Leather, S.R. 1987. Pine monoterpenes stimulate oviposition in the pine beauty moth, Panolis flammea. Entomologia Experimentalis et Applicata 43: 295303Google Scholar
Lewinsohn, E., Gijzen, M., Croteau, R. 1991. Defence mechanisms of conifers: differences in constitutive and wound-induced monoterpene biosynthesis among species. Plant Physiology 96: 44–9Google Scholar
Lewinsohn, E., Gijzen, M., Croteau, R. 1992. Wound-inducible pinene cyclase from grand fir: purification, characterization, and renaturation after SDS–PAGE. Archives of Biochemistry and Biophysics 293: 167–73Google Scholar
Lewinsohn, E., Savage, T.J., Gijzen, M., Croteau, R. 1993. Simultaneous analysis of monoterpenes and diterpenoids of conifer oleoresin. Phytochemical Analysis 4: 220–5Google Scholar
Lichtenthaler, H.K. 1998. The plants' 1-deoxy-D-xylulose-5-phosphate pathway for biosynthesis of isoprenoids. FETT Lipid 100: 128–38Google Scholar
Lichtenthaler, H.K. 1999. The 1-deoxy-D-xylulose 5-phosphate pathway of isoprenoid biosynthesis in plants. Annual Review of Plant Physiology and Plant Molecular Biology 50: 4765Google Scholar
Lichtenthaler, H.K., Rohmer, M., Schwender, J. 1997 a. Two independent biochemical pathways for isopentenyl diphosphate and isoprenoid biosynthesis in higher plants. Physiologia Plantarum 101: 643–52Google Scholar
Lichtenthaler, H.K., Schwender, J., Disch, A., Rohmer, M. 1997 b. Biosynthesis of isoprenoids in higher plant chloroplasts proceeds via a mevalonate independent pathway. FEBS Letters 400: 271–4Google Scholar
Lin, X., Hezari, M., Koepp, A.E., Floss, H.G., Croteau, R. 1996. Mechanism of taxadiene synthase, a diterpene cyclase that catalyzes the first step of taxol biosynthesis in Pacific yew. Biochemistry 35: 2968–77Google Scholar
Lindström, M., Norin, T., Birgersson, G., Schlyter, F. 1989. Variation of enantiomeric composition of α-pinene in Norway spruce, Picea abies, and its influence on production of verbenol isomers by Ips typographus in the field. Journal of Chemical Ecology 15: 541–8Google Scholar
Little, E.L. Jr, Critchfield, W.B. 1969. Subdivisions of the genus Pinus (pines). US Department of Agriculture Miscellaneous Publication 1144Google Scholar
Litvak, M.E., Monson, R.K. 1998. Patterns of induced and constitutive monoterpene production in conifer needles in relation to insect herbivory. Oecologia 114: 531–40Google Scholar
Litvak, M.E., Madronich, S., Monson, R.K. 1999. Herbivore-induced monoterpene emissions from coniferous forests: potential impact on local tropospheric chemistry. Ecological Applications 9: 1147–59CrossRefGoogle Scholar
Lois, L.M., Campos, N., Putra, S.R.. Danielsen, K., Rohmer, M., Boronat, A. 1998. Cloning and characterization of a gene from Escherichia coli encoding a transketolase-like enzyme that catalyzes the synthesis of D-1-deoxyxylulose 5-phosphate, a common precursor for isoprenoid, thiamin, and pyridoxal biosynthesis. Proceedings of the National Academy of Sciences of the USA 95: 2105–10Google Scholar
Lorio, P.L., Hodges, J.D. 1968. Microsite effects on oleoresin exudation pressure of large loblolly pines. Ecology 49: 1207–10Google Scholar
Macías-Sámano, J.E., Borden, J.H., Pierce, H.D. Jr, Gries, R., Gries, G. 1997. Aggregation pheromone of Pityokteines elegans. Journal of Chemical Ecology. 23: 1333–47Google Scholar
Macías-Sámano, J.E., Borden, J.H., Gries, R., Pierce, H.D. Jr, Gries, G., King, G.G.S. 1998 Primary attraction of the fir engraver, Scolytus ventralis. Journal of Chemical Ecology 24: 1049–75Google Scholar
MacMillan, J., Beale, M.H. 1999. Diterpene biosynthesis. pp. 217–44 in Cane, D.E. (Ed), Comprehensive natural products chemistry. Vol 2: isoprenoids including carotenoids and steroids. Oxford: PergamonGoogle Scholar
Madden, J.L., Pierce, H.D. Jr, Borden, J.H., Butterfield, A. 1988. Sites of production and occurrence of volatiles in Douglas-fir beetle, Dendroctonus pseudotsugae Hopkins. Journal of Chemical Ecology 14: 1305–17Google Scholar
Manville, J.F., Bock, K., Rudloff, E-v 1977. Occurrence of juvabione-type and epijuvabione-type sesquiterpenoids in Abies alba. Phytochemistry 16: 1967–71Google Scholar
Meigs, T.E., Simoni, R.D. 1997. Farnesol as a regulator of HMG-CoA reductase degradation: characterization and role of farnesyl pyrophosphatase. Archives of Biochemistry and Biophysics 345: 19CrossRefGoogle ScholarPubMed
Millar, C.I. 1993. Impact of the Eocene on the evolution of Pinus L. Annals of the Missouri Botanical Garden 80: 471–98Google Scholar
Millar, C.I. 1996. Tertiary vegetation history. pp. 71122in Sierra Nevada Ecosystem Project: Final report to Congress. Vol. II. Assessments and scientific basis for management options. Davis: University of California Centers for Water and Wildland ResourcesGoogle Scholar
Millar, C.I., Kinloch, B.B. 1991. Taxonomy, phylogeny, and coevolution of pines and their stem rusts. pp. 138in Hiratsuka, Y., Samoil, J.K., Blenis, P.V., Crane, P.E., Laishley, B.I. (Eds), Rusts of Pine, Proceedings of the 3rd IUFRO Rusts of Pine Working Party Conference, 18–22 September 1989, Banff, Alberta. Forestry Canada Northwest Region Northern Forestry Center Information Report NOR–X–317Google Scholar
Miller, C.N. 1988. The origin of modern conifer families. pp. 448–86 in Beck, C.B. (Ed), Origin and evolution of gymnosperms. New York: Columbia University PressGoogle Scholar
Miller, D.R., Borden, J.H. 1990 a. β-Phellandrene: kairomone for pine engraver, Ips pini (Say) (Coleoptera: Scolytidae). Journal of Chemical Ecology 16: 2519–31CrossRefGoogle ScholarPubMed
Miller, D.R., Borden, J.H. 1990 b. The use of monoterpenes by Ips latidens (LeConte) (Coleoptera: Scolytidae). The Canadian Entomologist 122: 301–7CrossRefGoogle Scholar
Miller, D.R., Borden, J.H. 1992. (S)-(+)-Ipsdienol: interspecific inhibition of Ips latidens (LeConte) by Ips pini (Say) (Coleoptera: Scolytidae). Journal of Chemical Ecology 18: 1577–82Google Scholar
Miller, D.R., Madden, J.L., Borden, J.H. 1986. Primary attraction of Ips latidens (LeConte) and Hylastes gracilis LeConte (Coleoptera: Scolytidae) to high-girdled lodgepole pine. The Canadian Entomologist 118: 85–8CrossRefGoogle Scholar
Miller, D.R., Gries, G., Borden, J.H. 1990. E-Mycenol: a new pheromone for the pine engraver, Ips pini (Say) (Coleoptera: Scolytidae). The Canadian Entomologist 122: 401–6CrossRefGoogle Scholar
Miller, D.R., Borden, J.H., King, G.G.S., Slessor, K.N. 1991. Ipsenol: an aggregation pheromone for Ips latidens (LeConte) (Coleoptera: Scolytidae). Journal of Chemical Ecology 17: 1517–27Google Scholar
Miller, D.R., Gibson, K.E., Raffa, K.F., Seybold, S.J., Teale, S.A., Wood, D.L. 1997. Geographic variation in response of pine engraver, Ips pini, and associated species to pheromone, lanierone. Journal of Chemical Ecology 23: 2013–31CrossRefGoogle Scholar
Mitton, J.B., Sturgeon, K.B. 1982. Bark beetles in North American conifers: a system for the study of evolutionary biology. Austin: University of Texas PressGoogle Scholar
Mirov, N.T. 1961. Composition of gum turpentines of pines. US Department of Agriculture Technical Bulletin 1239Google Scholar
Mirov, N.T. 1967. The genus Pinus. New York: The Ronald Press CompanyGoogle Scholar
Moeck, H.A. 1970. Ethanol as the primary attractant for the ambrosia beetle Trypodendron lineatum (Coleoptera: Scolytidae). The Canadian Entomologist 102: 985–95CrossRefGoogle Scholar
Morgan, A.V., Morgan, A. 1979. The fossil Coleoptera of the Two Creeks Forest Bed, Wisconsin. Quaternary Research 12: 226–40Google Scholar
Morgan, A.V., Morgan, A. 1980. Faunal assemblages and distributional shifts of Coleoptera during the late Pleistocene in Canada and the northern United States. The Canadian Entomologist 112: 1105–28Google Scholar
Morgan, A.V., Morgan, V., Ashworth, A.C., Matthews, J.V. Jr. 1983. Late Wisconsin fossil beetles in North America. pp. 354–63 in Wright, H.E. Jr (Ed.), Late Quaternary environments of the United States. Minneapolis: University of Minnesota PressGoogle Scholar
Mori, K., Puapoomchareon, P. 1987. Conversion of the enantiomers of sulcatol (6-methyl-5-hepten-2-ol) to the enantiomers of pityol [trans-2-(1-hydroxy-1-methylethyl)-5-methyletrahydrofuran], a male-specific attractant of the bark beetle Pityophthorus pityographus. Liebigs Annalen der Chemie 3: 271–2CrossRefGoogle Scholar
Morin, N.R. 1993. Flora of north America North of Mexico. Vol. 2. Pteridophytes and gymnosperms. Oxford: Oxford University PressGoogle Scholar
Naves, Y.R. 1948. Études sur les matières végétales volatiles LV: sur de nouvelles cetones, les tagetenones, isolées de l'huile essentielle de Lippia asperifolia Rich. Helvetica Chimica Acta 31: 2932Google Scholar
Nebeker, T.E., Hodges, J.D., Blanche, C.E. 1993. Host response to bark beetle and pathogen colonization. pp. 157–73 in Schowalter, T.D., Filip, G.M. (Eds), Beetle–pathogen interactions in conifer forests. London: Academic PressGoogle Scholar
Newman, J.D., Chappell, J. 1999. Isoprenoid biosynthesis in plants: carbon partitioning within the cytoplasmatic pathway. Critical Reviews in Biochemistry and Molecular Biology 34: 95106CrossRefGoogle Scholar
Paine, T.D., Millar, J.G., Hanlon, C.C., Hwang, J-S 1999. Identification of semiochemicals associated with Jeffrey pine beetle, Dendroctonus jeffreyi. Journal of Chemical Ecology 25: 433–53Google Scholar
Palli, S.R., Osir, E.O., Eng, W-S, Boehm, M.F., Edwards, M., Kulcsar, P., Ujvary, I., Hiruma, K., Prestwich, G.D., Riddiford, L.M. 1990. Juvenile hormone receptors in insect larval epidermis: identification by photoaffinity labelling. Proceedings of the National Academy of Sciences of the USA 87: 796800CrossRefGoogle Scholar
Palli, S.R., Touhara, K., Charles, J-P, Bonning, B.C., Atkinson, J.K., Trowell, S.C., Hiruma, K., Goodman, W.G., Kyriakides, T., Prestwich, G.D., Hammock, B.D., Riddiford, L.M. 1994. A nuclear juvenile hormone-binding protein from larvae of Manduca sexta: a putative receptor for the metamorphic action of juvenile hormone. Proceedings of the National Academy of Sciences of the USA 91: 6191–5Google Scholar
Payne, T.L., Billings, R.F., Delorme, J.D., Andryszak, N.A., Bartels, J., Francke, W., Vité, J.P. 1987. Kairomonal–pheromonal system in the black turpentine beetle, Dendroctonus terebrans (Ol.). Journal of Applied Entomology 103: 1522Google Scholar
Perez, A.L., Gries, R., Gries, G., Oehlschlager, A.C. 1996. Transformation of presumptive precursors to frontalin and exo-brevicomin by bark beetles and the West Indian sugarcane weevil (Coleoptera). Bioorganic and Medicinal Chemistry 4: 445–50Google Scholar
Perrin, T.E., Rasmussen, L.E.L., Gunawardena, R., Rasmussen, R.A. 1996. A method for collection, long-term storage, and bioassay of labile volatile chemosignals. Journal of Chemical Ecology 22: 207–21Google Scholar
Person, H.L. 1931. Theory in explanation of the selection of certain trees by the western pine beetle. Journal of Forestry 29: 696–9Google Scholar
Phillips, T.W. 1990. Responses of Hylastes salebrosus to turpentine, ethanol, and pheromones of Dendroctonus (Coleoptera: Scolytidae). Florida Entomologist 73: 286–92CrossRefGoogle Scholar
Phillips, M.A., Croteau, R. 1999. Resin-based defences in conifers. Trends in Plant Science 4: 184–90Google Scholar
Phillips, T.W., Atkinson, T.H., Foltz, J.L. 1989. Pheromone-based aggregation in Orthotomicus caelatus Eichhoff (Coleoptera: Scolytidae). The Canadian Entomologist 121: 933–40Google Scholar
Phillips, T.W., Nation, J.L., Wilkinson, R.C., Foltz, J.L., Pierce, H.D. Jr, Oehlschlager, A.C. 1990. Response specificity of Dendroctonus terebrans (Coleoptera: Scolytidae) to enantiomers of its sex pheromones. Annals of the Entomological Society of America 83: 251–7CrossRefGoogle Scholar
Phillips, M.A., Savage, T.J., Croteau, R. 1999. Monoterpene synthases of loblolly pine (Pinus taeda) produce pinene isomers and enantiomers. Archives of Biochemistry and Biophysics 372: 197204Google Scholar
Pierce, H.D.Conn, J.E., Oehlschlager, A.C., Borden, J.H. 1987. Monoterpene metabolism in female mountain pine beetles, Dendroctonus ponderosae Hopkins, attacking ponderosa pine. Journal of Chemical Ecology 13: 1455–80Google Scholar
Pierce, H.D. Jr, de Groot, P., Borden, J.H., Ramaswamy, S., Oehlschlager, A.C. 1995. Pheromones in the red pine cone beetle, Conophthorus resinosae Hopkins, and its synonym, C. banksianae McPherson (Coleoptera: Scolytidae). Journal of Chemical Ecology 21: 169–85Google Scholar
Pitman, G.B., Vité, J.P. 1963. Studies on the pheromone of Ips confusus (LeC.). I. Secondary sexual dimorphism in the hindgut epithelium. Contributions from Boyce Thompson Institute 22: 221–5Google Scholar
Pitman, G.B., Kliefoth, R.A., Vité, J.P. 1965. Studies on the pheromone of Ips confusus (LeConte). II. Further observations on the site of production. Contributions from Boyce Thompson Institute 23: 13–7Google Scholar
Poland, T.M., Borden, J.H. 1998 a. Competitive exclusion of Dendroctonus rufipennis induced by pheromones of Ips tridens and Dryocoetes affaber (Coleoptera: Scolytidae). Journal of Economic Entomology 91: 1150–61Google Scholar
Poland, T.M., Borden, J.H. 1998 b. Semiochemical-induced competition between Dendroctonus rufipennis and two secondary species, Ips tridens and Dryocoetes affaber (Coleoptera: Scolytidae). Journal of Economic Entomology 91: 1142–9Google Scholar
Price, R.A., Liston, A., Strauss, S.H. 1998. Phylogeny and systematics of Pinus. pp. 4968in Richardson, D.M. (Ed), Ecology and biogeography of Pinus. Cambridge: Cambridge University PressGoogle Scholar
Raffa, K.F. 1991. Induced defensive reactions in conifer bark-beetle systems. pp. 245–76 in Tallamy, D.W., Raupp, M.J. (Eds), Phytochemical induction by herbivores. New York: Academic PressGoogle Scholar
Raffa, K.F., Berryman, A.A. 1982 a. Accumulation of monoterpenes and associated volatiles following inoculation of grand fir with a fungus transmitted by the fir engraver Scolytus ventralis (Coleoptera: Scolytidae). The Canadian Entomologist 114: 797810CrossRefGoogle Scholar
Raffa, K.F., Berryman, A.A. 1982 b. Physiological differences between lodgepole pines resistant and susceptible to the mountain pine beetle and associated microorganisms. Environmental Entomology 11: 486–92CrossRefGoogle Scholar
Raffa, K.F., Berryman, A.A. 1983 a. The role of host plant resistance in the colonization behavior and ecology of bark beetles. Ecological Monographs 53: 2749Google Scholar
Raffa, K.F., Berryman, A.A. 1983 b. Physiological aspects of lodgepole pine wound responses to a fungal symbiont of the mountain pine beetle. The Canadian Entomologist 115: 723–34Google Scholar
Raffa, K.F., Berryman, A.A. 1987. Interacting selective pressures in conifer-bark beetle systems: a basis for reciprocal adaptations? American Naturalist 129: 234–62Google Scholar
Raffa, K.F., Dahlsten, D.L. 1995. Differential responses among natural enemies and prey to bark beetle pheromones. Oecologia 102: 1723Google Scholar
Raffa, K.F., Klepzig, K.D. 1989. Chiral escape of bark beetles from predators responding to bark beetle pheromones. Oecologia 80: 566–9Google Scholar
Raffa, K.F., Smalley, E.B. 1995. Interaction of pre-attack and induced monoterpene concentrations in host conifer defence against bark beetle-fungal complexes. Oecologia 102: 285–95Google Scholar
Raffa, K.F., Berryman, A.A., Simasko, J., Teal, W., Wong, B.L. 1985. Effects of grand fir monoterpenes on the fir engraver (Coleoptera: Scolytidae) and its symbiotic fungi. Environmental Entomology 14: 552–6Google Scholar
Raffa, K.F., Phillips, T.W., Salom, S.M. 1993. Strategies and mechanisms of host colonization by bark beetles. pp. 103–28 in Schowalter, T.D., Filip, G.M. (Eds), Beetle–pathogen interactions in conifer forests. London: Academic PressGoogle Scholar
Rand, H.A., Ryan, M.J., Wilczynski, W. 1992. Signal redundancy and receiver permissiveness in acoustic mate recognition by the tungara frog, Physalaemus pustulosus. American Zoologist 32: 8190Google Scholar
Ratzeburg, J.T.C. 1839. Die Forst-insekten oder Abbildung und Beschreibung der in den Waldern Preußens und der Nachbarstaaten als schädlich oder nützlich bekannt gewordenen Insekten. Edition 2. Berlin: Nicolai, Erster Theil, Die KäferGoogle Scholar
Ravn, M.M., Coates, R.M., Flory, J.E., Peters, R.J., Croteau, R. 2000. Stereochemistry of the cyclization-rearrangement of (+)-copalyl diphosphate to (—)-abietadiene catalyzed by recombinant abietadiene synthase from Abies grandis. Organic Letters 2: 573–6Google Scholar
Renwick, J.A.A., Dickens, J.C. 1979. Control of pheromone production in the bark beetle, Ips cembrae. Physiological Entomology 4: 377–81CrossRefGoogle Scholar
Renwick, J.A.A., Hughes, P.R., Ty, T.D. 1973. Oxidation products of pinene in the bark beetle, Dendroctonus frontalis. Journal of Insect Physiology 19: 1735–40Google Scholar
Renwick, J.A.A., Hughes, P.R., Krull, I.S. 1976 a. Selective production of cis- and trans-verbenol from (—)- and (+)-α-pinene by a bark beetle. Science (Washington, DC) 191: 199201Google Scholar
Renwick, J.A.A., Hughes, P.R., Pitman, G.B., Vité, J.P. 1976 b. Oxidation products of terpenes identified from Dendroctonus and Ips bark beetles. Journal of Insect Physiology 22: 725–7Google Scholar
Renwick, J.A.A., Hughes, P.R., Pitman, G.B., Vité, J.P. 1976 c. 2-Phenylethanol isolated from bark beetles. Naturwissenschaften 63: 198Google Scholar
Riddiford, L.M. 1994. Cellular and molecular actions of juvenile hormone I. General considerations and premetamorphic actions. Advances in Insect Physiology 24: 213–74Google Scholar
Riddiford, L.M. 1996. Juvenile hormone: the status of its “status quo” action. Archives of Insect Biochemistry and Physiology 32: 271–86Google Scholar
Rieske, L.K., Raffa, K.F. 1991. Effects of varying ethanol and turpentine levels on attraction of two pine root weevil species, Hylobius pales and Pachylobius picivorus (Coleoptera: Curculionidae). Environmental Entomology 20: 4852CrossRefGoogle Scholar
Rohdich, F., Wungsintaweekul, J., Fellermeier, M., Sagner, S., Herz, S., Kis, K., Eisenreich, W., Bacher, A., Zenk, M.H. 1999. Cytidine 5′-triphosphate-dependent biosynthesis of isoprenoids: YgbP protein of Escherichia coli catalyzes the formation of 4-phosphocytidy1-2-C-methylerythritol. Proceedings of the National Academy of Sciences of the USA 96: 11 758 – 63CrossRefGoogle Scholar
Rohmer, M. 1999. The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. Natural Product Reports 16: 565–74CrossRefGoogle ScholarPubMed
Rohmer, M., Knani, M., Simonin, P., Sutter, B., Sahm, H. 1993. Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate. Biochemical Journal 295: 517–24Google Scholar
Roling, M.P., Kearby, W.H. 1975. Seasonal flight and vertical distribution of Scolytidae attracted to ethanol in an oak–hickory forest in Missouri. The Canadian Entomologist 107: 1315–20Google Scholar
Rosenthal, G.A., Berenbaum, M.R. 1991. Herbivores: their interactions with secondary plant compounds. New York: Academic PressGoogle Scholar
Rowe, J.W. (Ed). 1989. Natural products of woody plants. Berlin: Springer-VerlagGoogle Scholar
Rudinsky, J.A., Morgan, M.E., Libbey, L.M., Putnam, T.B. 1977. Limonene released by the scolytid beetle Dendroctonus pseudotsugae. Zeitschrift für Angewandte Entomologie 82: 376–80Google Scholar
Salin, F., Pauly, G., Charon, J., Gleizes, M. 1995. Purification and characterization of trans-β-farnesene synthase from maritime pine (Pinus pinaster Ait.) needles. Journal of Plant Physiology 146: 203–9Google Scholar
Savage, T.J., Croteau, R. 1993. Biosynthesis of monoterpenes: regio- and stereochemistry of (+)-3-carene biosynthesis. Archives of Biochemistry and Biophysics 305: 581–7Google Scholar
Savage, T.J., Hatch, M.W., Croteau, R. 1994. Monoterpene synthases of Pinus contorta and related conifers: a new class of terpenoid cyclase. Journal of Biological Chemistry 269: 4012–20Google Scholar
Savage, T.J., Ichii, H., Hume, S.D., Little, D.B., Croteau, R. 1995. Monoterpene synthases from gymnosperms and angiosperms: stereospecificity and inactivation by cysteinyl- and arginyl-directed modifying reagents. Archives of Biochemistry and Biophysics 320: 257–65Google Scholar
Savoie, A., Borden, J.H., Pierce, H.D. Jr, Gries, R., Gries, G. 1998. Aggregation pheromone of Pityogenes knechteli and semiochemical-based interactions with three other bark beetles. Journal of Chemical Ecology 24: 321–37Google Scholar
Schedl, K.E. 1947. Die Borkenkäfer des baltischen Bernsteins. Zentralblatt für das Gesamtgebiet der Entomologie 2: 1245Google Scholar
Schlyter, F., Birgersson, G. 1989. Individual variation of pheromone in bark beetles and moths—a comparison and an evolutionary background. Holarctic Ecology 12: 457–65Google Scholar
Schwender, J., Seeman, M., Lichtenthaler, H.K., Rohmer, M. 1996. Biosynthesis of isoprenoids (carotenoids, sterols, prenyl side-chains of chlorophylls and plastoquinone) via a novel pyruvate/glyceraldehyde 3-phosphate non-mevalonate pathway in the green alga Scenedesmus obliquus. Biochemical Journal 316: 7380Google Scholar
Schwerdtfeger, F. 1973. Forest entomology. pp. 361–86 in Smith, R.F., Mittler, T.E., Smith, C.N. (Eds), History of entomology. Palo Alto: Annual Reviews Inc.Google Scholar
Schwert, D.P. 1992. Faunal transitions in response to an ice age: the late Wisconsinan record of Coleoptera in the North-Central United States. Coleopterists Bulletin 46: 6894Google Scholar
Schwert, D.P., Anderson, T.W., Morgan, A., Morgan, A.V., Karrow, P.F. 1985. Changes in late Quaternary vegetation and insect communities in southwestern Ontario. Quaternary Research 23: 205–26Google Scholar
Seybold, S.J., Teale, S.A., Wood, D.L., Zhang, A., Webster, F.X., Lindahl KQ, J.r., Kubo, I. 1992. The role of lanierone in the chemical ecology of Ips pini (Coleoptera: Scolytidae) in California. Journal of Chemical Ecology 18: 2305–29Google Scholar
Seybold, S.J., Quilici, D.R., Tillman, J.A., Vanderwel, D., Wood, D.L., Blomquist, G.J. 1995. De novo biosynthesis of the aggregation pheromone components ipsenol and ipsdienol by the pine bark beetles, Ips paraconfusus Lanier and Ips pini (Say) (Coleoptera: Scolytidae). Proceedings of the National Academy of Sciences of the USA 92: 8393–7Google Scholar
Shrimpton, D.M. 1973. Extractives associated with wound response of lodgepole pine attacked by the mountain pine beetle and associated microorganisms. Canadian Journal of Botany 51: 527–34Google Scholar
Shrimpton, D.M., Watson, J.A. 1971. Response of lodgepole pine seedlings to inoculation with Europhium clavigerum, a blue stain fungus. Canadian Journal of Botany 49: 373–5Google Scholar
Sih, A. 1980. Optimal behavior: can foragers balance two conflicting demands? Science (Washington, DC) 210: 1041–2Google Scholar
Silverstein, R.M., Rodin, J.O., Wood, D.L. 1966. Sex attractants in frass produced by male Ips confusus in ponderosa pine. Science (Washington, DC) 154: 509–10Google Scholar
Smith, R.H. 1961. The fumigant toxicity of three pine resins to Dendroctonus brevicomis and D. jeffreyi. Journal of Economic Entomology 54: 365–9Google Scholar
Smith, R.H. 1965 a. A physiological difference among beetles of Dendroctonus ponderosae (= D. monticolae) and D. ponderosae (= D. jeffreyi). Annals of the Entomological Society of America 58: 440–2Google Scholar
Smith, R.H. 1965 b. Effect of monoterpene vapors on the western pine beetles. Journal of Economic Entomology 58: 509–10Google Scholar
Smith, R.H. 1975. Formula for describing effect of insect and host tree factors on resistance to western pine beetle attack. Journal of Economic Entomology 68: 841–4Google Scholar
Sprenger, G.A., Schörken, U., Wiegert, T., Grolle, S., De Graaf, A.A., Taylor, S.V., Begley, T.P., Bringer-Meyer, S., Sahm, H. 1997. Identification of a thiamin-dependent synthase in Escherichia coli required for the formation of 1-deoxy-D-xylulose 5-phosphate precursor to isoprenoids, thiamin, and pyridoxal. Proceedings of the National Academy of Sciences of the USA 94: 12 857 – 62Google Scholar
Stark, R.W., Dahlsten, D.L. 1970. Studies on the population dynamics of the western pine beetle, Dendroctonus brevicomis LeConte (Coleoptera: Scolytidae). Berkeley: University of California Division of Agricultural SciencesGoogle Scholar
Steele, C.L., Lewinsohn, E., Croteau, R. 1995. Induced oleoresin biosynthesis in grand fir as a defence against bark beetles. Proceedings of the National Academy of Sciences of the USA 92: 4164–8CrossRefGoogle ScholarPubMed
Steele, C.L., Crock, J., Bohlmann, J., Croteau, R. 1998 a. Sesquiterpene synthases from grand fir (Abies grandis): comparison of constitutive and wound-induced activities, and cDNA isolation, characterization, and bacterial expression of δ-selinene synthase and γ-humulene synthase. Journal of Biological Chemistry 273: 2078–89Google Scholar
Steele, C.L., Katoh, S., Bohlmann, J., Croteau, R. 1998 b. Regulation of oleoresinosis in grand fir (Abies grandis): differential transcriptional control of monoterpene, sesquiterpene, and diterpene synthase genes in response to wounding. Plant Physiology 116: 1497–504Google Scholar
Stock, A.J., Borden, J.H. 1983. Secondary attraction in the western balsam bark beetle, Dryocoetes confusus (Coleoptera: Scolytidae). The Canadian Entomologist 115: 539–50Google Scholar
Stock, A.J., Borden, J.H., Pratt, T.L., Pierce, H.D. Jr, Johnson, B.D. 1990. endo-Brevicomin: an antiaggregation pheromone for the western balsam bark beetle, Dryocoetes confusus Swaine (Coleoptera: Scolytidae). The Canadian Entomologist 122: 935–40Google Scholar
Stock, A.J., Borden, J.H., Pratt, T.L. 1994. Containment and concentration of infestations of the western balsam bark beetle, Dryocoetes confusus (Coleoptera: Scolytidae), using the aggregation pheromone exo-brevicomin. Canadian Journal of Forest Research 24: 483–92Google Scholar
Stofer Vogel, B., Wildung, M.R., Vogel, G., Croteau, R. 1996. Abietadiene synthase from grand fir (Abies grandis): cDNA isolation, characterization, and bacterial expression of a bifunctional diterpene cyclase involved in resin acid biosynthesis. Journal of Biological Chemistry 271: 23 262 – 8Google Scholar
Swaine, J.M. 1918. Canadian bark beetles. II. A preliminary classification with an account of the habits and means of control. Canada Department of Agriculture Technology Bulletin 14Google Scholar
Takahashi, S., Kuzuyama, T., Watanabe, H., Seto, H. 1998. A l-deoxy-D-xylulose 5-phosphate reductoisomerase catalyzing the formation of 2-C-methyl-D-erythritol 4-phosphate in an alternative nonmevalonate pathway for terpenoid biosynthesis. Proceedings of the National Academy of Sciences of the USA 95: 9879–84Google Scholar
Teale, S.A., Webster, F.X., Zhang, A., Lanier, G.N. 1991. Lanierone: a new pheromone component from Ips pini (Coleoptera: Scolytidae) in New York. Journal of Chemical Ecology 17: 1159–76CrossRefGoogle Scholar
Tillman, J.A., Holbrook, G.L., Dallara, P.L., Schal, C., Wood, D.L., Blomquist, G.J., Seybold, S.J. 1998. Endocrine regulation of de novo aggregation pheromone biosynthesis in the pine engraver, Ips pini (Say) (Coleoptera: Scolytidae). Insect Biochemistry and Molecular Biology 28: 705–15Google Scholar
Tillman, J.A., Seybold, S.J., Jurenka, R.A., Blomquist, G.J. 1999. Insect pheromones—an overview of biosynthesis and endocrine regulation. Insect Biochemistry and Molecular Biology 29: 481514Google Scholar
Tittiger, C., Blomquist, G.J., Ivarsson, P., Borgeson, C.E., Seybold, S.J. 1999. Juvenile hormone regulation of HMG-R gene expression in the bark beetle, Ips paraconfusus (Coleoptera: Scolytidae): implications for male aggregation pheromone biosynthesis. Cellular and Molecular Life Sciences 55: 121–7Google Scholar
Tittiger, C., O'Keeffe, C., Bengoa, C.S., Barkawi, L.S., Seybold, S.J., Blomquist, G.J. 2000. Isolation and endocrine regulation of an HMG-CoA synthase cDNA from the male Jeffrey pine beetle, Dendroctonus jeffreyi (Coleoptera: Scolytidae). Insect Biochemistry and Molecular Biology. 30: 1203–11Google Scholar
Tomlin, E.S., Borden, J.H., Pierce, H.D. Jr. 1996. Relationship between cortical resin acids and resistance of Sitka spruce to the white pine weevil. Canadian Journal of Botany 74: 599606Google Scholar
Tomlin, E.S., Borden, J.H., Pierce, H.D. Jr. 1997. Relationship between volatile foliar terpenes and resistance of Sitka spruce to the white pine weevil. Forest Science 43: 501–8Google Scholar
Unnithan, G.C., Nair, K.K. 1977. Ultrastructure of juvenile hormone-induced degenerating flight muscles in a bark beetle, Ips paraconfusus. Cell and Tissue Research 185: 481–90Google Scholar
Vanderwel, D. 1994. Factors affecting pheromone production in beetles. Archives of Insect Biochemistry and Physiology 25: 347–62Google Scholar
Vanderwel, D., Oehlschlager, A.C. 1987. Biosynthesis of pheromones and endocrine regulation of pheromone production in Coleoptera. pp. 175215in Prestwich, G.D., Blomquist, G.J. (Eds), Pheromone biochemistry. Orlando: Academic PressGoogle Scholar
Vanderwel, D., Oehlschlager, A.C. 1992. Mechanism of brevicomin biosynthesis from (Z)-6-nonen-2-one in a bark beetle. Journal of the American Chemical Society 14: 5081–6Google Scholar
Vanderwel, D., Gries, G., Singh, S.M., Borden, J.H., Oehlschlager, A.C. 1992. (E)- and (Z)-6-Nonen-2-one: biosynthetic precursor of endo- and exo-brevicomin in two bark beetles (Coleoptera: Scolytidae). Journal of Chemical Ecology 18: 1389–404Google Scholar
van Gelderen, D.M., van Hoey Smith, J.R.P. 1996 a. Conifers, the illustrated encyclopedia. Vol. I. Portland: Timber PressGoogle Scholar
van Gelderen, D.M., van Hoey Smith, J.R.P. 1996 b. Conifers, the illustrated encyclopedia. Vol. II. Portland: Timber PressGoogle Scholar
Vité, J.P. 1965. Die Wirkung pflanzen- und insekteneigener Lockstoffe auf Pityophthorus and Pityogenes (Coleoptera: Scolytidae). Naturwissenschaften 10: 267–8Google Scholar
von Rudloff, E. 1975. Volatile leaf oil analysis in chemosystematic studies of North American conifers. Biochemical Systematics and Ecology 2: 131–67Google Scholar
von Schantz, M., Widen, K.G., Hiltunen, R. 1973. Structures of some aliphatic monoterpenoids isolated from the essential oil of Ledum palustre L. Acta Chemica Scandinavica 27: 551–6Google Scholar
Walker, B.H. 1992. Biodiversity and ecological redundancy. Conservation Biology 6: 1823Google Scholar
Wallin, K.F., Raffa, K.F. 1999. Altered constitutive and inducible phloem monoterpenes following natural defoliation of jack pine: implications to host mediated inter-guild interactions and plant defence theories. Journal of Chemical Ecology 25: 861–80Google Scholar
Wallin, K.F., Raffa, K.F. 2000. Influences of external chemical cues and internal physiological parameters on the multiple steps of post-landing host selection behavior of Ips pini (Coleoptera: Scolytidae). Environmental Entomology 29: 442–53Google Scholar
Wang, K., Ohnuma, S-I. 1999. Chain-length determination mechanism of isoprenyl diphosphate synthases and implications for molecular evolution. Trends in Biochemical Sciences 24: 445–51Google Scholar
Wang, X-R, Tsumura, Y., Yoshimaru, H., Nagasaka, K., Szmidt, A.E. 1999. Phylogenetic relationships of Eurasian pines (Pinus, Pinaceae) based on chloroplast RBCL, MATK, RPL20-RPS18 spacer, and TRNV intron sequences. American Journal of Botany 86: 1742–53Google Scholar
Waters, W.E. 1985. The pine-bark beetle ecosystem: a pest management challenge. pp. 148in Waters, W.E., Stark, R.W., Wood, D.L. (Eds), Integrated pest management in pine-bark beetle ecosystems. New York: John Wiley & SonsGoogle Scholar
Welch, H.J. 1991. The conifer manual. Vol. 1. Dordrecht: Kluwer Academic PublishersGoogle Scholar
Welch, H.J., Haddow, G. 1993. The world checklist of conifers. Buchenhill: Landsman's Bookshop Ltd.Google Scholar
Werner, R.A. 1972. Aggregation behaviour of the beetle Ips grandicollis in response to host-produced attractants. Journal of Insect Physiology 18: 423–37Google Scholar
White, R.A. Jr, Franklin, R.T., Agosin, M. 1979. Conversion of α-pinene oxide by rat liver and the bark beetle Dendroctonus terebrans microsomal fractions. Pest Biochemistry and Physiology 10: 233–42Google Scholar
White, R.A. Jr, Agosin, M., Franklin, R.T., Webb, J.W. 1980. Bark beetle pheromones: evidence for physiological synthesis mechanisms and their ecological implications. Zeitschrift Angewandte Entomologie 90: 255–74Google Scholar
Whitten, W.M., Hills, H.G., Williams, N.H. 1988. Occurrence of ipsdienol in floral fragrances. Phytochemistry 27: 2759–60Google Scholar
Wildung, M.R., Croteau, R. 1996. A cDNA clone for taxadiene synthase, the diterpene cyclase that catalyzes the committed step of taxol biosynthesis. Journal of Biological Chemistry 271: 9201–4Google Scholar
Wilkinson, R.C. 1980. Relationship between cortical monoterpenes and susceptibility of eastern white pine to white-pine weevil attack. Forest Science 26: 581–9Google Scholar
Williams, D.C., Wildung, M.R., Jin, A.Q., Dalal, D., Oliver, J.S., Coates, R.M., Croteau, R. 2000. Heterologous expression and characterization of a “pseudomature” form of taxadiene synthase involved in paclitaxel (taxol) biosynthesis and evaluation of a potential intermediate and inhibitors of the multistep diterpene cyclization reaction. Archives of Biochemistry and Biophysics 379: 137–46Google Scholar
Wilson, K., Lessells, C.M. 1994. Evolution of clutch size in insects. 1. A review of static optimality models. Journal of Evolutionary Biology 7: 339–63Google Scholar
Wise, M.L., Croteau, R. 1999. Monoterpene biosynthesis. pp. 97154in Cane, D.E. (Ed), Comprehensive natural products chemistry. Vol 2: Isoprenoids including carotenoids and steroids. Oxford: PergamonGoogle Scholar
Wiygul, G., MacGown, M.W., Sikorowski, P.P., Wright, J.E. 1982. Localization of pheromone in male boll weevils, Anthonomus grandis. Entomologia Experimentalis et Applicata 31: 330–1Google Scholar
Wiygul, G., Dickens, J.C., Smith, J.W. 1990. Effect of juvenile hormone III and beta-bisabolol on pheromone production in fat bodies from male boll weevils, Anthonomus grandis Boheman (Coleoptera: Curculionidae). Comparative Biochemistry and Physiology B Comparative Biochemistry 95: 489–91Google Scholar
Wood, D.L. 1962. The attraction created by males of a bark beetle Ips confusus (LeConte) attacking ponderosa pine. Pan-Pacific Entomologist 38: 141–5Google Scholar
Wood, D.L. 1972. Selection and colonization of ponderosa pine by bark beetles. Symposia of the Royal Entomology Society of London 6: 101–7Google Scholar
Wood, D.L. 1982. The role of pheromones, kairomones, and allomones in the host selection and colonization behavior of bark beetles. Annual Review of Entomology 27: 411–46Google Scholar
Wood, D.L., Bushing, R.W., 1963. The olfactory response of Ips confusus (LeConte) (Coleoptera: Scolytidae) to the secondary attraction in the laboratory. The Canadian Entomologist 95: 1066–78Google Scholar
Wood, D.L., Vité, J.P. 1961. Studies on the host selection behavior of Ips confusus (LeConte) (Coleoptera: Scolytidae) attacking Pinus ponderosa. Contributions from Boyce Thompson Institute 21: 7995Google Scholar
Wood, D.L., Browne, L.E., Silverstein, R.M., Rodin, J.O. 1966. Sex pheromones of bark beetles. I. Mass production, bio-assay, source, and isolation of sex pheromone of Ips confusus (LeC.). Journal of Insect Physiology 12: 523–36Google Scholar
Wood, D.L., Stark, R.W., Silverstein, R.M., Rodin, J.O. 1967. Unique synergistic effects produced by the principal sex attractant compounds of Ips confusus (LeConte) (Coleoptera: Scolytidae). Nature (London) 215: 206Google Scholar
Wood, D.L., Browne, L.E., Bedard, W.D., Tilden, P.E., Silverstein, R.M., Rodin, J.O. 1968. Response of Ips confusus to synthetic sex pheromones in nature. Science (Washington, DC) 159: 1373–4Google Scholar
Wood, S.L. 1982. The bark and ambrosia beetles of North and Central America (Coleoptera: Scolytidae), a taxonomic monograph. Great Basin Naturalist Memoirs 6Google Scholar
Wood, S.L. 1987. A reclassification of the genera of Scolytidae (Coleoptera). Great Basin Naturalist Memoirs 10Google Scholar
Wood, S.L., Bright, D.E. 1992. A catalog of Scolytidae and Platypodidae (Coleoptera), Part 2, Taxonomic index, Volumes A and B. Great Basin Naturalist Memoirs 13Google Scholar
Zavarin, E. 1968. Chemotaxonomy of the genus Abies — II. Within tree variation of the terpenes in cortical oleoresin. Phytochemistry 7: 92107Google Scholar
Zavarin, E., Snajberk, K. 1973. Geographic variability of monoterpenes from cortex of Pseudotsuga menziessii. Pure and Applied Chemistry 34: 411–34Google Scholar
Zavarin, E., Critchfield, W.B., Snajberk, K. 1969. Turpentine composition of Pinus contorta × Pinus banksiana hybrids and hybrid derivatives. Canadian Journal of Botany 47: 1443–53Google Scholar
Zavarin, E., Cobb FW, J.r., Bergot, J., Barber, H.W. 1971. Variation of the Pinus ponderosa needle oil with season and needle age. Phytochemistry 10: 3107–14Google Scholar
Zeidler, J.G., Lichtenthaler, H.K., May, H.U., Lichtenthaler, F.W. 1997. Is isoprene emitted by plants synthesized via the novel isopentenyl pyrophosphate pathway? Zeitschrift für Naturforschung Section C Biosciences 52: 1523Google Scholar
Zethner-Møller, O., Rudinsky, J.A. 1967. Studies on the site of sex pheromone production in Dendroctonus pseudotsugae (Coleoptera: Scolytidae). Annals of the Entomological Society of America 60: 575–82Google Scholar