Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-28T05:16:54.889Z Has data issue: false hasContentIssue false

Biology of larvae and adults of Erynnis propertius at the northern edge of its range

Published online by Cambridge University Press:  02 April 2012

Kirsten M. Prior
Affiliation:
Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States of America
Jason D.K. Dzurisin
Affiliation:
Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States of America
Shannon L. Pelini
Affiliation:
Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States of America
Jessica J. Hellmann*
Affiliation:
Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States of America
*
1Corresponding author (e-mail: [email protected]).

Abstract

We describe aspects of the life history of Erynnis propertius (Scudder and Burgess) (Lepidoptera: Hesperiidae) by examining several populations over multiple years. We focused on peripheral populations of this species because they are isolated, are threatened by habitat loss, and may play an important role in driving poleward range expansion under increasing regional temperature. Our findings show that the annual larval growth rate does not vary directly with temperature, adult flight phenology and the timing of key resources respond to average daytime temperatures in spring, and population-density patterns among sites are robust over years across a broad region near the species' northern range limit. In addition, we provide descriptions of all larval instars for this species. This fundamental information about the biology, timing, and abundance of this species will facilitate further experimental study and improved assessment of its conservation status.

Résumé

Nous décrivons des aspects du cycle biologique d'Erynnis propertius (Scudder et Burgess) (Lepidoptera : Hesperiidae) d'après l'étude de diverses populations pendant plusieurs années. Nous nous sommes intéressés aux populations périphériques de l'espèce parce que celles-ci sont isolées et menacées de perdre leur habitat et qu'elles peuvent jouer un rôle important dans l'expansion de l'aire de répartition vers les pôles à cause de l'accroissement de la température régionale. Le taux de croissance annuel des larves ne varie pas directement en fonction de la température; la phénologie de vol des adultes et l'apparition des ressources essentielles réagissent aux températures moyennes de jour du printemps; les patrons de densité de population dans les différents sites sont stables au cours des années dans une large région adjacente à la limite nordique de l'aire de répartition de l'espèce. De plus, nous présentons des descriptions de tous les stades larvaires de l'espèce. Cette information de base sur la biologie, la phénologie et l'abondance de l'espèce permettra de faire des études expérimentales dans le futur et de mieux évaluer son statut de conservation.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boggs, C.L., Watt, W.B., and Ehrlich, P.R. 2003. Butterflies: ecology and evolution taking flight. University of Chicago Press, Chicago.CrossRefGoogle Scholar
British Columbia Conservation Data Centre. 2008. BC species and ecosystems explorer. British Columbia Ministry of the Environment [online]. Available from http://srmapps.gov.bc.ca/apps/eswp [accessed 25 September 2008].Google Scholar
Brown, K.S. Jr., and Freitas, A.V.L. 2000. Atlantic forest butterflies: indicators for landscape conservation. Biotropica, 32: 934956.CrossRefGoogle Scholar
Committee on the Status of Endangered Wildlife in Canada (COSEWIC). 2008. Committee on the Status of Endangered Wildlife in Canada [online]. Available from http://www.cosewic.gc.ca/eng/sct5/index_e.cfm [accessed 25 September 2008].Google Scholar
de Groot, P. 1998. Life history and habits of the white pine cone borer, Eucosoma tocullionana (Lepidoptera: Tortricidae). The Canadian Entomologist, 130: 7990.CrossRefGoogle Scholar
Dyar, H.G. 1890. The number of molts of lepidopterous larvae. Psyche (Cambridge), 5: 420422.CrossRefGoogle Scholar
Elmes, G.W., Thomas, J.A., Munguira, M.L., and Fiedler, K. 2001. Larvae of lycaenid butterflies that parasitize ant colonies proved exceptions to normal insect growth rules. Biological Journal of the Linnean Society, 73: 259278.CrossRefGoogle Scholar
Erickson, W.R. 1996. Classification and interpretation of Garry oak (Quercus garryana) plant communities and ecosystems in southwestern British Columbia. Unpublished master's thesis, University of Victoria, Victoria, British Columbia.Google Scholar
Feeny, P. 1970. Seasonal changes in oak leaf tannins and nutrients as a cause of spring feeding by winter moth and caterpillars. Ecology, 51: 565581.CrossRefGoogle Scholar
Fleishman, E., and Murphy, D.D. 2009. A realistic assessment of the indicator potential of butterflies and other charismatic taxonomic groups. Conservation Biology. In press.Google Scholar
Forkner, R.E., Marquis, R.J., and Lill, J.T. 2004. Feeny revisited: condensed tannins as anti-herbivore defenses in leaf-chewing herbivore communities of Quercus. Ecological Entomology, 29: 174187.CrossRefGoogle Scholar
Fuchs, M. 2001. Towards a recovery strategy for Garry oak and associated ecosystems in Canada: ecological assessment and literature review. Tehnical Report GBEI/EC-00-030. Environment Canada, Canadian Wildlife Service, Pacific and Yukon Region.Google Scholar
Goettel, M.S., and Philogene, B.J.R. 1979. Further studies on the biology of Pyrrharctia (isia) isabella (Lepidoptera Arctiidae). 3. Relationship between head capsule width and number of instars. The Canadian Entomologist, 111: 323326.CrossRefGoogle Scholar
Gordo, O., and Sanz, J.J. 2005. Phenology and climate change: a long-term study in a Mediterranean locality. Oecologia, 146: 484495.CrossRefGoogle Scholar
Gordo, O., and Sanz, J. 2006. Temporal trends in phenology of the honeybee Apis mellifera (L.) and the small white Pieris rapae (L.) in the Iberian Peninsula (1952–2004). Ecological Entomology, 31: 261268.CrossRefGoogle Scholar
Guppy, C.S., and Shepard, J.N. 2001. Butterflies of British Columbia. University of British Columbia Press, Vancouver, British Columbia.Google Scholar
Guppy, J.C. 1969. Some effects of temperature on the immature stages of the armyworm, Pseudaletia unipuncta (Lepidoptera: Noctuidae), under controlled conditions. The Canadian Entomologist, 101: 13201327.CrossRefGoogle Scholar
Hamann, A., and Wang, T. 2006. Potential effects of climate change on ecosystem and tree species distribution in British Columbia. Ecology, 87: 27732786.CrossRefGoogle ScholarPubMed
Hamon, N., Allen-Williams, L., Lee, J.B., and Bardner, R. 1984. Larval instar determination of the pea and bean weevil Sitona lineatus L. (Coleoptera: Curculionidae). Entomologist's Monthly Magazine, 120: 167171.Google Scholar
Hardy, G.A. 1958. Notes on the life-histories of five species of Lepidoptera occurring on Vancouver Island. Report of the Provincial Museum of Natural History and Anthropology 1957, Victoria, British Columbia. pp. 3036.Google Scholar
Hellmann, J.J. 2002. The effect of an environmental change on mobile butterfly larvae and the nutritional quality of their hosts. Journal of Animal Ecology, 71: 925936.CrossRefGoogle Scholar
Hellmann, J.J., Pelini, S.L., Prior, K.M., and Dzurisin, J.D.K. 2008. The response of two butterfly species to climate variation at the edge of their range and the implications for poleward range shifts. Oecologia, 157: 583592.CrossRefGoogle ScholarPubMed
Layberry, R.A., Hall, P.W., and Lafontaine, J.D. 1998. The butterflies of Canada. University of Toronto Press, Toronto, Ontario.CrossRefGoogle Scholar
Lea, T. 2006. Historical Garry oak ecosystems of Vancouver Island, British Columbia, preEuropean contact to the present. Davidsonia, 17: 3450.Google Scholar
Leibee, G.L., Pass, B.C., and Yeargan, K.V. 1980. Instar determination of clover root curculio, Sitona hispidulus (Coleoptera: Curculionidae). Journal of the Kansas Entomological Society, 53: 473475.Google Scholar
MacDougall, A.S., Beckwith, B.R., and Maslovat, C.Y. 2004. Defining conservation strategies with historical perspectives: a case study from a degraded oak grassland ecosystem. Conservation Biology, 18: 455465.CrossRefGoogle Scholar
Mote, P.W. 2003. Trends in temperature and precipitation in the Pacific Northwest during the twentieth century. North-west Science, 77: 271282.Google Scholar
Murakami, M., Yoshida, K., Hara, H., and Toda, M.J. 2005. Spatio-temporal variation in lepidopteran larval assemblages associated with oak, Quercus crispula: the importance of leaf quality. Ecological Entomology, 30: 521531.CrossRefGoogle Scholar
Nealis, V. 1987. The number of instars in jack pine budworm, Choristoneura pinus pinus Free. (Lepidoptera: Tortricidae), and the effects of parasitism on head capsule width and development time. The Canadian Entomologist, 119: 773777.CrossRefGoogle Scholar
Nijhout, H.F. 1975. A threshold size for metamorphosis in the tobacco hornworm, Manduca sexta (L.). Biological Bulletin, 149: 214225.CrossRefGoogle ScholarPubMed
Opler, P.A. 1999. Peterson field guide of western butterflies. Revised edition. Houghton Mifflin Co., Boston, Massachusetts.Google Scholar
Parmesan, C., Ryrholm, N., Stefanescu, C., Hill, J.K., Thomas, C.D., Descimon, H., Huntley, B., Kaila, L., Kullberg, J., Tammaur, T., Tennent, W.J., Thomas, J.A., and Warren, M. 1999. Poleward shifts in geographical ranges of butterfly species associated with warming. Nature (London), 399: 579583.CrossRefGoogle Scholar
Pavlik, B.M., Muick, P.C., Johnson, S.G., and Popper, M. 1993. Oaks of California. Cachuma Press, Los Olivos, California.Google Scholar
Pelini, S., Prior, K., Parker, D., Dzurisin, J., Lindroth, R., and Hellmann, J. 2009. Climate change and temporal and spatial mismatches in insect communities. In Climate change: observed impacts on planet earth. Edited by Letcher, T.M.. Elsevier, Oxford, United Kingdom. pp. 215231.CrossRefGoogle Scholar
Pollard, E. 1991. Synchrony of population fluctuations: the dominant influence of widespread factors on local butterfly populations. Oikos, 60: 710.CrossRefGoogle Scholar
Pollard, E., and Yates, T.J. 1993. Monitoring butterflies for ecology and conservation: the British butterfly monitoring scheme. Chapmen & Hall, London, United Kingdom.Google Scholar
Rothery, R., and Roy, D.B. 2001. Application of generalized additive models to butterfly transect count data. Journal of Applied Statistics, 28: 897909.CrossRefGoogle Scholar
Roy, D.B., and Sparks, T.H. 2000. Phenology of British butterflies and climate change. Global Change Biology, 6: 407416.CrossRefGoogle Scholar
Scott, J.A. 1986. The butterflies of North America: a natural history and field guide. Stanford University Press, Stanford, California.CrossRefGoogle Scholar
Stefanescu, C., Penuelas, J., and Filella, I. 2003. Effects of climate change on the phenology of butterflies in northwest Mediterranean Basin. Global Change Biology, 9: 14941506.CrossRefGoogle Scholar
van Asch, M., van Tienderen, P.H., Holleman, L.J.M., and Visser, M.E. 2007. Predicting adaption of phenology in response to climate change, an insect herbivore example. Global Change Biology, 13: 15961604.CrossRefGoogle Scholar
Verdinelli, M., and Sanna-Passino, G. 2003. Development and feeding efficiency of Malacosoma neustrium larvae reared with Quercus spp. leaves. Annals of Applied Biology, 143: 161167.CrossRefGoogle Scholar
Visser, M.E., and Holleman, J.M. 2001. Warmer springs disrupt the synchrony of oak and winter moth phenology. Proceedings of the Royal Society of London B Biological Sciences, 268: 289294.CrossRefGoogle Scholar
Zakharov, E.V., and Hellmann, J.J. 2008. Genetic differentiation across a latitudinal gradient in two co-occurring butterfly species: revealing population differences in a context of climate change. Molecular Ecology, 71: 189208.CrossRefGoogle Scholar
Zenner-Polania, I., and Helgesen, R.G. 1973. Effect of temperature on instar number and head-capsule width of Platynota stultana (Lepidopetera: Tortricidae). Environmental Entomology, 2: 823828.CrossRefGoogle Scholar