Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-24T11:46:33.288Z Has data issue: false hasContentIssue false

Bioclimatic approach to assessing the potential impact of climate change on wheat midge (Diptera: Cecidomyiidae) in North America

Published online by Cambridge University Press:  25 June 2015

O. Olfert*
Affiliation:
Saskatoon Research Centre, 107 Science Place, Saskatoon, Saskatchewan, Canada S7N 0X2
R.M. Weiss
Affiliation:
Saskatoon Research Centre, 107 Science Place, Saskatoon, Saskatchewan, Canada S7N 0X2
R.H. Elliott
Affiliation:
Saskatoon Research Centre, 107 Science Place, Saskatoon, Saskatchewan, Canada S7N 0X2
*
1 Corresponding author (e-mail: [email protected]).

Abstract

Wheat midge, Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae), Palaearctic in origin, is thought to have been introduced into North America in the early 1800s. It is a major pest of spring wheat (Triticum aestivum Linnaeus (Poaceae)), durum wheat (T. durum Desfontaines), triticale (X-Triticosecale), and, to a lesser extent, spring rye (Secale cereale Linnaeus (Poaceae)) throughout the northern Great Plains. Climate is the principal factor regulating the distribution and abundance of most insects. A bioclimate simulation model was developed to explain the current distribution and abundance of S. mosellana. The current distribution for North America, Europe, and Asia was consistent with model projections. General circulation model scenarios (CSIRO-MK 3.0 and MIROC-H) for the 2030 and 2070 time periods were applied to the bioclimate simulation model of S. mosellana to assess the potential impact of changing climates on their distribution and relative abundance. Potential changes to relative abundance and distribution were most sensitive to time period, as opposed to climate change scenario. Differences between the MIROC-H and CSIRO-MK 3.0 models were restricted to particular regions in North America. The study found that the range and abundance of S. mosellana, and associated crop risk, was predicted to expand in a northerly direction and contract across the present southern limits.

Type
Behaviour & Ecology
Copyright
© Entomological Society of Canada 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Subject editor: Keith Summerville

References

Affolter, F. 1990. Structure and dynamics of the parasitoid complex of the wheat midges Sitodiplosis mosellana (Géhin) and Contarinia tritici (Kirby). Final Report. International Institute of Biological Control, Delémont, Switzerland.Google Scholar
Basedow, T. 1977. Der Einfluss von Temperatur und Niederschlägen auf Diapause und Phänologie der Weizengallmücken Contarinia tritici (Kirby) und Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae). Zoologische Jahrbücher Abteilung für Ökologie und Geographie der Tiere, 104: 302326.Google Scholar
Basedow, T. and Gillich, H. 1982. Untersuchungen zur prognose des Auftretens der Weizengallmücken Contarinia tritici (Kirby) und Sitodiplosis mosellana (Géhin) (Diptera, Cecidomyiidae). II. Faktoren, die ein Schadauftreten der Mücken verhindern können. Anz. Schädlingskunde Pflanzenschutz Umweltschutz, 55: 8489.CrossRefGoogle Scholar
Basedow, T. and Schȕtte, F. 1982. Die Populationsdynamic de Weizengallmücken Contarinia tritici (Kirby) und Sitodiplosis mosellana (Géhin) (Dipt., Cecidomyidae) in zwei Norddeutschen Weizenanbaugebeiten von 1969 bis 1976. Zoologische Jahrbücher Abteilung für Ökologie und Geographie der Tiere, 109: 3382.Google Scholar
Borkent, A. 1989. A review of the wheat blossom midge, Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae) in Canada. Research Branch, Biosystematics Research Centre, Ottawa, Ontario, Canada.CrossRefGoogle Scholar
Braslavska, O. 1976. The wheat midge – an infrequently noted wheat pest. Uroda, 4: 87.Google Scholar
Canada Grain Commission. 2012. Quality of western Canadian wheat 2012 [online]. Available from http://www.grainscanada.gc.ca/wheat-ble/harvest-recolte/2012/hqww/hqww12-qrbo12-03-eng.htm [accessed 5 February 2015].Google Scholar
Daamen, R.A. 1981. Surveys of diseases and pests of winter wheat in the Netherlands, 1979–1980. Rijksuniversiteit Gent, 46: 933937.Google Scholar
Dexter, J.E., Preston, K.R., Cooke, L.A., Morgan, B.C., Kruger, J.E., Kilborn, R.H., et al. 1987. The influence of orange wheat blossom midge (Sitodiplosis mosellana Géhin) damage on hard red spring wheat quality and the effectiveness of insecticide treatments. Canadian Journal of Plant Science, 67: 697712.CrossRefGoogle Scholar
Doane, J.F., Mukerji, M.K., and Olfert, O. 2000. Sampling distribution and sequential sampling for subterranean stages of orange wheat blossom midge, Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae) in spring wheat. Crop Protection, 19: 427434.CrossRefGoogle Scholar
Doane, J.F. and Olfert, O. 2008. Seasonal development of wheat midge, Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae), in Saskatchewan, Canada. Crop Protection, 27: 951958.CrossRefGoogle Scholar
Elliott, R.H. and Mann, L.W. 1996. Susceptibility of red spring wheat, Triticum aestivum L. cv. Katepwa, during heading and anthesis to damage by wheat midge, Sitodiplosis mosellana (Géhin) (Diptera: Cedidomyiidae). The Canadian Entomologist, 128: 367375.CrossRefGoogle Scholar
Elliott, R.H., Mann, L.W., and Olfert, O. 2009. Calendar and degree-day requirements for emergence of adult wheat midge, Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae) in Saskatchewan, Canada. Crop Protection, 28: 588594.CrossRefGoogle Scholar
Elliott, R.H., Olfert, O., and Hartley, S. 2011. Management practices for wheat midge, Sitodiplosis mosellana (Géhin). Prairie Soils and Crops, 4: 813. Available from http://www.prairiesoilsandcrops.ca/articles/volume-4-2-screen.pdf [accessed 5 May 2015].Google Scholar
European and Mediterranean Plant Protection Organization Global Database. 2014. Sitodiplosis mosellana datasheet (SITDMO) [online]. Page: Worldwide distribution for Sitodiplosis mosellana. Available from https://gd.eppo.int/taxon/SITDMO/distribution [accessed 16 February 2014].Google Scholar
Fauna Europaea Web Service. 2014. Fauna Europaea version 2.6.2. Available from http://www.faunaeur.org/full_results.php?id=302587 [accessed 16 February 2014].Google Scholar
Felt, E.P. 1921. Wheat midge, Thecodiplosis mosellana (Géhin). Bulletin of the New York State Museum, 231: 3554.Google Scholar
Gagné, R.J. and Doane, J.F. 1999. The larval instars of the wheat midge, Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae). Proceedings of the Entomological Society of Washington, 101: 5763.Google Scholar
Gao, Y.J. 1995. Chemical control of wheat blossom midge, Sitodiplosis mosellana Géhin. Bulletin of Agricultural Science and Technology, 8: 22.Google Scholar
Global Biodiversity Information Facility. 2014. Available from http://www.gbif.org/species/1596501 [accessed 1 December 2014].Google Scholar
Hinks, C.F. and Doane, J.F. 1988. Observations on rearing and diapause termination of Sitodiplosis mosellana (Diptera: Cecidomyiidae) in the laboratory. Journal of Economic Entomology, 81: 18161818.CrossRefGoogle Scholar
Kriticos, D.J., Morin, L., Leriche, A., Anderson, R.C., and Caley, P. 2013. Combining a climatic niche model of an invasive fungus with its host species distributions to identify risks to natural assets: Puccinia psidii sensu lato in Australia. Public Library of Science One, 8: e64479.Google ScholarPubMed
Kriticos, D.J., Webber, B.L., Leriche, A., Ota, N., Macadam, I., Bathols, J., et al. 2012. CliMond: global high-resolution historical and future scenario climate surfaces for bioclimatic modelling. Methods in Ecology and Evolution, 3: 5364.CrossRefGoogle Scholar
Kurppa, S. 1989. Wheat blossom midges, Sitodiplosis mosellana (Géhin) and Contarinia tritici (Kirby) in Finland, during 1981–1987. Annales Agriculturae Fenniae, 28: 8796.Google Scholar
Lamb, R.J., Wise, I.L., Olfert, O., Gavloski, J.E., and Barker, P.S. 1999. Distribution and seasonal abundance of Sitodiplosis mosellana (Diptera: Cecidomyiidae) in spring wheat. The Canadian Entomologist, 131: 387397.CrossRefGoogle Scholar
Mika, A.M. and Newman, J.A. 2010. Climate change scenarios and models yield conflicting predictions about the future risk of an invasive species in North America. Agricultural and Forest Entomology, 12: 213221.CrossRefGoogle Scholar
Mika, A.M., Weiss, R.M., Olfert, O., Hallett, R.H., and Newman, J.A. 2008. Will climate change be beneficial or detrimental to the invasive swede midge in North America? Contrasting predictions using climate projections from different general circulation models. Global Change Biology, 14: 17211733.CrossRefGoogle Scholar
Mills, P.F. 1994. The agricultural potential of north western Canada and Alaska and the impact of climate change. Arctic, 47: 115123.CrossRefGoogle Scholar
Mukerji, M.K., Olfert, O., and Doane, J.F. 1988. Development of sampling designs for egg and larval populations of the wheat midge, Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae), in wheat. The Canadian Entomologist, 120: 497505.CrossRefGoogle Scholar
Nakicenovic, N. and Swart, R. 2000. Special report on emissions scenarios. A special report of the working group III of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom.Google Scholar
Oakley, J.N., Cumbleton, P.C., Corbett, S.J., Saunders, P., Green, D.I., Young, J.E.B., et al. 1998. Prediction of orange wheat blossom midge activity and risk of damage. Crop Protection, 17: 145149.CrossRefGoogle Scholar
Olfert, O., Elliott, R.H., and Hartley, S. 2009. Non-native insects in agriculture: strategies to manage the economic and environmental impact of wheat midge, Sitodiplosis mosellana, in Saskatchewan. Biological Invasions, 11: 127133.CrossRefGoogle Scholar
Olfert, O., Elliott, R.H., Meers, S., and Hartley, S. 2014. Forecast of wheat midge in Saskatchewan for 2014. 2013 Crop Variety Highlights and Insect Pest Forecasts Saskatoon Research Centre Technical Bulletin, 2014–01: 1213.Google Scholar
Olfert, O., Hallett, R.H., Weiss, R.M., Soroka, J., and Goodfellow, S. 2006. Potential distribution and relative abundance of swede midge, Contarinia nasturtii, an invasive pest in Canada. Entomologia experimentalis et applicata, 120: 221228.CrossRefGoogle Scholar
Olfert, O. and Weiss, R.M. 2006. Impact of climate change on potential distributions and relative abundances of Oulema melanopus, Meligethes viridescens and Ceutorhyncus obstrictus in Canada. Agriculture, Ecosystems and Environment, 113: 295301.CrossRefGoogle Scholar
Olfert, O., Weiss, R.M., and Kriticos, D. 2011. Application of general circulation models to assess the potential impact of climate change on potential distribution and relative abundance of Melanoplus sanguinipes (Fabricius) (Orthoptera: Acrididae) in North America. Psyche, 2011, Article ID 980372. Available from http://dx.doi.org/10.1155/2011/980372 [accessed 5 May 2015].Google Scholar
Olfert, O., Weiss, R.M., Turkington, K., Beckie, H., and Kriticos, D. 2012. Bioclimatic approach to assessing the potential impact of climate change on representative crop pests in North America. In Climate change and the Canadian agricultural environment. Topics in Canadian weed science. Volume 8. Edited by A.J.A. Ivany and R.E. Blackshaw. Canadian Weed Science Society, Pinanwa, Manitoba, Canada. Pp. 4769.Google Scholar
Pearson, R.G., Dawson, T.P., Berry, P.M., and Harrison, P.A. 2002. SPECIES: a spatial evaluation of climate impact on the envelope of species. Ecological Modelling, 154: 289300.CrossRefGoogle Scholar
Quarberg, D.M., Jahns, T.R., and Chumley, J.I. 2009. Alaska cereal grains crop profile. Crop profiles and timelines. National Information System for the Regional IPM Centers. Available from http://www.ipmcenters.org/CropProfiles/docs/akcerealgrains2009.pdf [accessed 12 December 2014].Google Scholar
Ramankutty, N., Foley, J.A., Norman, J., and McSweeney, K. 2002. The global distribution of cultivable lands: current patterns and sensitivity to possible climate change. Global Ecology and Biogeography, 11: 377392.CrossRefGoogle Scholar
Readshaw, J.L. 1966. The ecology of the swede midge, Contarinia nasturtii (Kieffer) (Diptera, Cecidomyiidae). I. Life-history and influence of temperature and moisture on development. Bulletin of Entomological Research, 56: 685700.CrossRefGoogle Scholar
Reeher, M.M. 1945. The wheat midge in the Pacific Northwest. Circular 732. United States Department of Agriculture, United States Government Printing Office, Washington, District of Columbia, United States of America.Google Scholar
Saskatchewan Ministry of Agriculture. 2014. Wheat midge forecast map. Available from http://www.agriculture.gov.sk.ca/Default.aspx?DN=a48e6e22-ab1a-479e-a454-22d9470d96a5 [accessed 16 February 2014].Google Scholar
Skuhravy, V. and Skuhrava., M. 1978. Die weizengallmücken, ihre bedeutung and kontrolle in der ÈSSR. Wissenschaftliche Beiträge, 14: 155160.Google Scholar
Speyer, W. 1957. Oviposition by the wheat gall midges Contarinia tritici Kirby and Sitodiplosis mosellana Géhin. Journal of Plant Diseases and Plant Protection, 64: 534540.Google Scholar
Sutherst, R.W., Maywald, G.F., and Kriticos, D.J. 2007. CLIMEX version 3 user’s guide. Hearne Scientific Software Pty Ltd, Melbourne, Australia.Google Scholar
Thuiller, W. 2004. Patterns and uncertainties of species’ range shifts under climate change. Global Change Biology, 10: 20202027.CrossRefGoogle Scholar
Wallengren, H. 1937. Studies of wheat midges: larvae in soil. Lund University Yearbook – Natural Science Studies Part 2, 33: 152.Google Scholar
Western Committee on Crop Pests. 2011. Western Committee on Crop Pests annual meeting minutes. Western Forum on Pest Management. Available from http://www.westernforum.org/Documents/WCCP/WCCP%20Minutes/WCCP%20MINUTES%20-%202011.pdf [accessed 16 November 2014].Google Scholar
Wise, I.L. and Lamb, R.J. 2004. Diapause and emergence of Sitodiplosis mosellana (Diptera: Cecidomyiidae) and its parasitoid Macroglenes penetrans (Hymenoptera: Pteromalidae). The Canadian Entomologist, 136: 7790.CrossRefGoogle Scholar
Wright, A.T. and Doane, J.F. 1987. Wheat midge infestation of spring cereals in northeastern Saskatchewan. Canadian Journal of Plant Science, 67: 117120.CrossRefGoogle Scholar