Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-28T05:18:01.207Z Has data issue: false hasContentIssue false

THE BERTHA ARMYWORM, MAMESTRA CONFIGURATA (LEPIDOPTERA: NOCTUIDAE). EFFECTS OF DIETARY LINOLENIC ACID ON PUPAL SYNDROME, WING SYNDROME, SURVIVAL, AND PUPAL FAT COMPOSITION1

Published online by Cambridge University Press:  31 May 2012

G. K. Bracken
Affiliation:
Research Station, Agriculture Canada, Winnipeg, Manitoba R3T 2M9

Abstract

Linolenic acid, added to a defatted diet in which wheast and alfalfa meal were the only protein sources, optimally reduced wing syndrome (defined as crumpled wings) in Mamestra brassica Walker at 1.1 mg/g (w/w dry wt.) of diet, increased survival to pupa at 2.2 mg/g, and reduced pupal syndrome (defined as improper formation of the 4th abdominal sternite) and increased survival to adult at 5.8 mg/g. Pupal weight increased and incidence of diapause decreased as dietary linolenic acid increased. Linoleic acid substituted for linolenic acid only in survival to the pupal stage. Pupae from larvae fed artificial diets had more fat (20.6–25.5% dry wt.) than pupae from larvae fed rape leaves (16.5%). Absolute levels of linolenic acid increased in pupae in proportion to dietary levels including pupae from larvae reared on rape leaves but the relative amount of linolenic acid sequestered in pupae from leaf-fed larvae was greater.

Pupal syndrome is a sensitive indicator of dietary adequacy and its occurrence is affected by dietary linolenic acid and possibly other fat soluble components.

Résumé

L'addition d'acide linolénique à une ration dégraissée, dans laquelle la levure et le tourteau de soja sont les seules sources protéiques, a réduit de façon optimale le syndrome de l'aile froissée chez Mamestra brassica Walker à raison de 1,11 mg/g (en poids calculé sur la matière sèche) de la ration, prolongé la survie jusqu'au stade pupe à 2,18 mg/g, corrigé le syndrome pupal (malformation de la 4e sternite abdominale) et prolongé la survie jusqu'au stade adulte à 5,77 mg/g. Le poids des pupes augmente et la fréquence de la diapause régresse avec l'accroissement de l'apport alimentaire d'acide. L'acide linoléique ne peut remplacer l'acide linolénique que dans la survie jusqu'au stade pupe. Les pupes issues de laves nourries de rations artificielles ont plus de graisse (20,6 à 25,5% en poids calculé sur la matière sèche) que celles issues de larves nourries de feuilles de colza (16.5%). Les concentrations absolues d'acide linolénique augmentent chez les pupes proportionnellement aux apports alimentaires, y compris chez celles issues de larves nourries de feuilles de colza, mais la teneur relative en acide fixé par ces dernières est plus élevée.

Le syndrome pupal est un bon indicateur de la pertinence du régime alimentaire et sa fréquence d'apparition est tributaire de la teneur en acide linolénique alimentaire et peut-être d'autres composants liposolubles.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Appelqvist, L-Å. 1976. Lipids in the Cruciferae. pp. 221277in Vaughan, J. G., MacLeod, A. J., and Tones, B. M. G. (Eds.), The Biology and Chemistry of the Cruciferae. Academic Press, N.Y.Google Scholar
Bligh, C. G. and Dyer, W. J.. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37: 911917.CrossRefGoogle ScholarPubMed
Bucher, G. E. and Bracken, G. K.. 1976. The bertha armyworm, Mamestra configurata (Lepidoptera: Noctuidae). Artificial diet and rearing technique. Can. Ent. 108: 13271338.CrossRefGoogle Scholar
Grau, P. A. and Terriere, L. C.. 1971. Fatty acid profile of the cabbage looper, Trichoplusia ni, and the effect of diet and rearing conditions. J. Insect Physiol. 17: 16371649.CrossRefGoogle Scholar
Kastari, T. and Turunen, S.. 1977. Lipid utilization in Pieris brassicae reared on meridic and natural diets: implications for dietary improvement. Entomologia exp. appl. 22: 7180.CrossRefGoogle Scholar
Lepper, H. A. 1950. Methods of Analysis, edited by Lepper, H. A.. Assoc. Off. Agric. Chem., Wash., D.C.Google Scholar
Metcalfe, L.D. and Schmitz, A.A. 1961. The rapid preparation of fatty acid esters for gas chromatographic analysis. Anal. Chem. 33: 363364.CrossRefGoogle Scholar
Schaefer, C. H. 1968. The relationship of the fatty acid composition of Heliothis zea larvae to that of its diet. J. Insect Physiol. 14: 171178.CrossRefGoogle Scholar
Terriere, L. C. and Grau, P. A.. 1972. Dietary requirements and tissue levels of fatty acids in three Noctuidae. J. Insect Physiol. 18: 633647.Google Scholar
Turunen, S. 1973. Utilization of fatty acids by Pieris brassicae reared on artificial and natural diets. J. Insect Physiol. 19: 19992009.CrossRefGoogle Scholar
Turunen, S. 1974. Metabolism and function of fatty acids in a phytophagous lepidopteran. Ann. Zool. Fenn. 11: 170184.Google Scholar
Turunen, S. 1979. Digestion and absorption of lipids in insects. Comp. Biochem. Physiol. 63A: 455460.CrossRefGoogle Scholar
Vanderzant, E. S. 1968. Dietary requirements of the bollworm, Heliothis zea (Lepidoptera: Noctuidae), for lipids, choline, and inositol and the effect of fats and fatty acids on the composition of the body fat. Ann. ent. Soc. Am. 61: 120125.CrossRefGoogle Scholar