Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-24T16:04:01.025Z Has data issue: false hasContentIssue false

ATTRACTION OF THE TWOLINED CHESTNUT BORER, AGRILUS BILINEATUS (WEBER) (COLEOPTERA: BUPRESTIDAE), AND ASSOCIATED BORERS TO VOLATILES OF STRESSED WHITE OAK1

Published online by Cambridge University Press:  31 May 2012

James P. Dunn
Affiliation:
Departments of Entomology and Forestry, University of Kentucky, Lexington, Kentucky, USA 40546
Thomas W. Kimmerer
Affiliation:
Departments of Entomology and Forestry, University of Kentucky, Lexington, Kentucky, USA 40546
Gerald L. Nordin
Affiliation:
Departments of Entomology and Forestry, University of Kentucky, Lexington, Kentucky, USA 40546

Abstract

The twolined chestnut borer, Agrilus bilineatus (Weber) (Coleoptera: Buprestidae), is associated with mortality of stressed oaks in the eastern deciduous forests of North America. Beetles were attracted to stressed trees within hours of the onset of stress. We hypothesized that adult beetles rapidly locate suitable hosts by olfactory detection of tree-released volatiles. Trees with sticky-band traps and vane traps baited with crude steam distillates from inner bark of stressed white oaks, or with combinations of ethanol and oak volatiles, captured significantly more beetles than did water controls. Ethanol alone did not attract significant numbers of A. bilineatus. Eighty-two percent of beetles captured were females. Ethanol-baited traps captured large numbers of Cerambycidae, Scolytidae, and a few Cleridae, and these insects were not attracted to oak volatiles. Sticky-band traps were more effective than vane traps in capturing A. bilineatus and other Buprestidae, but Cerambycidae and Scolytidae were more effectively captured in vane traps. Our results show that A. bilineatus is attracted to oak volatiles but later successional beetles are attracted to ethanol.

Résumé

Le perceur, Agrilus bilineatus (Weber) (Coleoptera : Buprestidae), est associé à la mortalité des chênes soumis au stress dans les forêts de feuillus des régions Est de l’Amérique du Nord. Les coléoptères étaient attirés par des arbres soumis au stress dans les heures qui suivirent les premières attaques de la maladie. Nous sommes partis de l’hypothèse que les coléoptères adultes trouvent rapidement les hôtes convenables par détection olfactive des volatiles émanant de l’arbre. Les arbres des pièges englués et des pièges enterrés amorcés par des vapeurs non raffinées de la distillation d’écorces internes de chênes blancs soumis au stress, ou d’un mélange d’éthanol et de volatiles de chêne, ont attrapé significativement plus de coléoptères que les pièges à eau témoins. L’éthanol seul n’a pas attiré un nombre significatif de A. bilineatus. Quatre-vingt-deux pour cent des coléoptères capturés étaient des femelles. Les pièges à éthanol ont capturé un grand nombre de Cerambycidae, Scolytidae et quelques Cleridae, et ces insectes n’ont pas été attirés par les volatiles du chêne. Les pièges englués étaient plus efficaces que les pièges enterrés pour la capture des A. bilineatus ainsi que des Buprestidae, alors que les Cerambycidae et Scolytidae étaient plus efficacement capturés par les pièges enterrés. Nos recherches montrent que A. bilineatus est attiré par les volatiles de chêne alors que les coléoptères attirés par l’éthanol, attaquent les arbres morts.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baker, W.L. 1972. Eastern Forest Insects. USDA For. Serv. Misc. Publ. 1175.Google Scholar
Borden, J.H., Lindren, B.S., and Chong, L.. 1980. Ethanol and alpha-pinene as synergists for the aggregation pheromones of two Gnathotrichus species. Can. J. For. Res. 10: 290292.CrossRefGoogle Scholar
Cade, S.C., Hrutfiord, B.F., and Gara, R.I.. 1970. Identification of a primary attractant for Gnathotrichus suleatus isolated from western hemlock logs. J. econ. Ent. 63: 10141015.CrossRefGoogle Scholar
Cote, W.A., and Allen, D.C.. 1980. Biology of twolined chestnut borer, Agrilus bilineatus, in Pennsylvania and New York. Ann. ent. Soc. Am. 73: 409413.CrossRefGoogle Scholar
Dahlsten, D.L. 1984. Relationships between bark beetles and their natural enemies. pp. 140182in Mitton, J.B., and Sturgeon, K.B. (Eds.), Bark Beetles in North American Conifers. University of Texas Press.Google Scholar
Dunbar, D.M., and Stephens, G.R.. 1976. The bionomics of the twolined chestnut borer. pp. 7386in Anderson, J.F., and Kaya, H.K. (Eds.), Perspectives in Forest Entomology. Academic Press.Google Scholar
Dunn, J.P. 1985. Attraction of the twolined chestnut borer, Agrilus bilineatus (Weber), and other associated borers to stressed white oak, Quercus alba L. M.S. thesis, University of Kentucky. 113 pp.CrossRefGoogle Scholar
Elstner, E.F., and Konze, J.R.. 1976. Effect of point freezing on ethylene and ethane production by sugar beet leaf disks. Nature 263: 351352.CrossRefGoogle Scholar
Feeny, P. 1976. Plant apparency and chemical defense. Rec. Adv. Phytochem. 10: 1–40. “pp. 163206in Harborne, J.B. (Eds.), Coevolution. Academic Press, London.” 206. Academic Press, London.Google Scholar
Gilmore, A.R. 1977. Effects of soil moisture stress on monoterpenes in loblolly pine. J. Chem. Ecol. 3: 667676.CrossRefGoogle Scholar
Haack, R.A., and Benjamin, D.M.. 1982. The biology and ecology of the twolined chestnut borer, Agrilus bilineatus, on oaks, Quercus spp. in Wisconsin. Can. Ent. 114: 385395.CrossRefGoogle Scholar
Kimmerer, T.W., and Kozlowski, T.T.. 1982. Ethylene, ethane, acetaldehyde and ethanol production by plants under stress. Plant Physiol. 69: 840847.CrossRefGoogle ScholarPubMed
Knull, J.N. 1946. The longhorned beetles of Ohio. (Coleoptera: Cerambycidae). Ohio Biol. Serv. Bull. 39: 133354.Google Scholar
Lanier, G.H. 1983. Integration of visual stimuli, host odorants and pheromones by bark beetles and weevils in locating and colonizing host trees. pp. 161172in Ahmad, S. (Ed.), Herbivorous Insects. Host-Seeking Behavior and Mechanism. Academic Press.CrossRefGoogle Scholar
Moeck, H.A. 1970. Ethanol as the primary attractant for the ambrosia beetle Trypodendron lineatum. Can. Ent. 102: 985995.CrossRefGoogle Scholar
Montgomery, M.E., and Wargo, P.M.. 1983. Ethanol and other host-derived volatiles as attractants to beetles that bore in hardwoods. J. Chem. Ecol. 9: 181190.CrossRefGoogle ScholarPubMed
Nye, W., and Spoehr, H.A.. 1943. The isolation of hexanal from leaves. Arch. Biochem. 2: 2335.Google Scholar
Peacock, J.W., Wright, S.L., and Ford, R.D.. 1984. Elm volatiles increase attraction of Scolytus multistriatus to multilure. Environ. Ent. 13: 394398.CrossRefGoogle Scholar
Pearce, G.T., Gore, W.E., Silverstein, R.M., Peacock, J.W., Cuthbert, R.A., Lanier, G.N., and Simeone, J.B.. 1975. Chemical attractants for the smaller European elm bark beetle, Scolytus multistriatus. J. Chem. Ecol. 1: 115124.CrossRefGoogle Scholar
Roling, M.P., and Kearby, W.H.. 1975. Seasonal flight and vertical distribution of Scolytidae attracted to ethanol. Can. Ent. 107: 13151320.CrossRefGoogle Scholar
Schauenstein, E., Esterbauer, H., and Zollner, H.. 1977. Aldehydes in Biological Systems. Pion Ltd., London.Google Scholar
Visser, J.H., Van Straten, S., and Maarse, H.. 1979. Isolation and identification of volatiles of potato Solanum tuberosum, a host plant of the Colorado potato beetle, Leptinotarsa decemlineata. J. Chem. Ecol. 5(1): 1325.CrossRefGoogle Scholar
Wargo, P.M., and Montgomery, M.E.. 1983. Colonization by Armillaria mellea and Agrilus bilineatus of oaks injected with ethanol. For. Sci. 29: 848857.Google Scholar
Wright, S.T.C. 1978. Phytohormones and stress phenomena. pp. 495536in Lethham, D.S., Goodwin, P.B., and Higgins, T.J.V. (Eds.), Phytohormones and Related Compounds—A Comprehensive Treatise. Elsevier/North Holland, Amsterdam.Google Scholar