Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T18:54:17.794Z Has data issue: false hasContentIssue false

Association of tree diameter with body size and lipid content of mountain pine beetles

Published online by Cambridge University Press:  01 May 2012

M. Graf
Affiliation:
Natural Resources and Environmental Studies Institute, University of Northern British Columbia, Prince George, British Columbia, Canada V2N 4Z9
M.L. Reid
Affiliation:
Department of Biological Sciences, University of Calgary, Calgary, Alberta, CanadaT2N 1N4
B.H. Aukema
Affiliation:
Natural Resources and Environmental Studies Institute, University of Northern British Columbia, Prince George, British Columbia, Canada V2N 4Z9; and Department of Entomology, University of Minnesota, St. Paul, Minnesota 55108, United States of America
B.S. Lindgren*
Affiliation:
Natural Resources and Environmental Studies Institute, University of Northern British Columbia, Prince George, British Columbia, Canada V2N 4Z9
*
Corresponding author (e-mail: [email protected]).

Abstract

Host tree diameter is considered an important predictor of the population dynamics of the mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae: Scolytinae), but the relationship between host tree diameter and beetle traits is unclear. The primary objective of this study was to determine how the quality of individual mountain pine beetles, measured as body size (pronotum width) and lipid content, varied with the diameter of lodgepole pine trees, Pinus contorta var. latifolia Engelmann (Pinaceae). Naturally attacked trees, ranging in diameter from 10 to 35 cm, were selected from stands near Prince George, British Columbia, Canada. Colonisation density and pupal density generally increased with tree diameter, but the number of pupal chambers per gallery start remained constant. Tree diameter positively affected beetle body size, which in turn was positively correlated with absolute lipid content in both sexes and relative lipid content in males. However, tree diameter did not directly predict absolute lipid content, and relative lipid content decreased with tree diameter in males. Larger beetles emerged earlier in the emergence period with relative lipid content remaining constant throughout emergence. All relationships had considerable unexplained variation. Thus, the use of tree diameter or emergence time as predictors of population dynamics of mountain pine beetles should be done with caution.

Résumé

On considère que le diamètre de l'arbre hôte est une variable prédictive importante de la dynamique de population du dendroctone du pin ponderosa, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae: Scolytinae), mais la relation entre le diamètre de l'arbre hôte et les traits du coléoptère n'est pas claire. Le principal objectif de notre étude est de déterminer comment la qualité de dendroctones du pin ponderosa individuels, déterminée par la taille corporelle (largeur du pronotum) et le contenu lipidique, varie en fonction du diamètre de pins vrillés, Pinus contorta var. latifolia Engelmann (Pinaceae). Nous avons sélectionné des pins attaqués de manière naturelle de diamètres variant de 10–35 cm dans des peuplements près de Prince George, Colombie-Britannique, Canada. La densité de colonisation et la densité de nymphes augmentent généralement en fonction du diamètre de l'arbre, mais le nombre de chambres nymphales par ouverture de galerie demeure constant. Le diamètre de l'arbre a un effet positif sur la taille corporelle du coléoptère, qui à son tour est en corrélation positive avec le contenu lipidique absolu chez les deux sexes et avec le contenu lipidique relatif chez les mâles. Cependant, le diamètre de l'arbre ne permet pas de prédire directement le contenu lipidique absolu et le contenu lipidique relatif décroît en fonction du diamètre de l'arbre chez les mâles. Les coléoptères de plus grande taille apparaissent plus tôt durant la période d’émergence et leur contenu lipidique relatif demeure constant durant toute la période d’émergence. Toutes ces relations contiennent beaucoup de variation inexpliquée. Il faut utiliser avec prudence le diamètre de l'arbre ou le moment de l’émergence comme variables prédictives de la dynamique de population du dendroctone du pin ponderosa.

Type
Original Article
Copyright
Copyright © Entomological Society of Canada 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amman, G.D. 1969. Mountain pine beetle emergence in relation to depth of lodgepole pine bark. Research Note INT-96. United States Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station, Ogden, Utah, United States of America.Google Scholar
Amman, G.D. 1972. Mountain pine beetle brood production in relation to thickness of lodgepole pine phloem. Journal of Economic Entomology, 65: 138140.CrossRefGoogle Scholar
Amman, G.D. 1975. Abandoned mountain pine beetle galleries in lodgepole pine. Research Note INT-97. United States Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station, Ogden, Utah, United States of America.Google Scholar
Amman, G.D.Cole, W.E. 1983. Mountain pine beetle dynamics in lodgepole pine forests part II: population dynamics. General Technical Report INT-145. United States Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station, Ogden, Utah, United States of America.Google Scholar
Amman, G.D.Pace, V.E. 1976. Optimum egg gallery densities for the mountain pine beetle in relation to lodgepole pine phloem thickness. Research Note INT-209. United States Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station, Ogden, Utah, United States of America.Google Scholar
Amman, G.D.Pasek, J.E. 1986. Mountain pine beetle in ponderosa pine: effects of phloem thickness and egg gallery density. Research Paper INT-367. United States Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station, Ogden, Utah, United States of America.Google Scholar
Anderbrant, O. 1988. Survival of parent and brood adult bark beetles, Ips typographus, in relation to size, lipid content and re-emergence or emergence day. Physiological Entomology, 13: 121129.CrossRefGoogle Scholar
Anderbrant, O.Schlyter, F. 1989. Causes and effect of individual quality in bark beetles. Holarctic Ecology, 12: 488493.Google Scholar
Anderbrant, O., Schlyter, F., Birgersson, G. 1985. Intraspecific competition affecting parents and offspring in the bark beetle Ips typographus. Oikos, 45: 8998.CrossRefGoogle Scholar
Atkins, M.D. 1969. Lipid loss with flight in the Douglas-fir beetle. The Canadian Entomologist, 101: 164165.CrossRefGoogle Scholar
Awmack, C.S.Leather, S.R. 2002. Host plant quality and fecundity in herbivorous insects. Annual Review of Entomology, 47: 817844.CrossRefGoogle ScholarPubMed
Bell, W.J. 1991. Searching behaviour: the behavioural ecology of finding resources. Chapman and Hall, New York.Google Scholar
Bentz, B.J. 2006. Mountain pine beetle population sampling: inferences from Lindgren pheromone traps and tree emergence cages. Canadian Journal of Forest Research, 36: 351360.CrossRefGoogle Scholar
Björklund, N., Lindgren, B.S., Shore, T.L., Cudmore, T. 2009. Can predicted mountain pine beetle net production be used to improve stand prioritization for management? Forest Ecology and Management, 257: 233237.CrossRefGoogle Scholar
Botterweg, P.F. 1982. Dispersal and flight behaviour of the spruce bark beetle Ips typographus in relation to sex, size and fat content. Zeitschrift für angewandte Entomologie, 94: 466489.CrossRefGoogle Scholar
Cole, D.M. 1973. Estimation of phloem thickness in lodgepole pine. Research Paper INT-148. United States Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station, Ogden, Utah, United States of America.Google Scholar
Cole, W.E.Amman, G.D. 1969. Mountain pine beetle infestations in relation to lodgepole pine diameters. Research Report INT-95. United States Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station, Ogden, Utah, United States of America.Google Scholar
Coppedge, B.R., Stephen, F.M., Felton, G.W. 1994. Variation in size and lipid content of adult southern pine beetles, Dendroctonus frontalis Zimmermann (Coleoptera: Scolytidae) in relation to season. Journal of Entomological Science, 29: 570579.CrossRefGoogle Scholar
Cudmore, T.J., Björklund, N., Carroll, A.L., Lindgren, B.S. 2010. Climate change and range expansion of an aggressive bark beetle: evidence of higher reproductive success in naïve host tree populations. Journal of Applied Ecology, 47: 10361043.CrossRefGoogle Scholar
Day, T.Rowe, L. 2002. Developmental thresholds and the evolution of reaction norms for age and size at life-history transitions. American Naturalist, 159: 338350.CrossRefGoogle ScholarPubMed
Elkin, C.M.Reid, M.L. 2005. Low energy reserves and energy allocation decisions affect reproduction by mountain pine beetles, Dendroctonus ponderosae. Functional Ecology, 19: 102109.CrossRefGoogle Scholar
Elkin, C.M.Reid, M.L. 2010. Shifts in breeding habitat selection behaviour in response to population density. Oikos, 119: 10701080.CrossRefGoogle Scholar
Fretwell, S.D.Lucas, H.L.J. 1970. On territorial behavior and other factors influencing habitat distribution in birds. Acta Biotheoretica, 19: 1636.CrossRefGoogle Scholar
Graf, M.L. 2009. Effects of host quality parameters on fitness of the mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae: Scolytinae). MSc thesis. University of Northern British Columbia, Prince George, British Columbia.Google Scholar
Hedden, R.L.Billings, R.F. 1977. Seasonal variations in fat content and size of the southern pine beetle in east Texas. Annals of the Entomological Society of America, 70: 876880.CrossRefGoogle Scholar
Herms, D.A.Mattson, W.J. 1992. The dilemma of plants: to grow or defend. Quarterly Review of Biology, 67: 283335.CrossRefGoogle Scholar
Jactel, H. 1993. Individual variability of the flight potential of Ips sexdentatus Boern. (Coleoptera: Scolytidae) in relation to day of emergence, sex, size, and lipid content. The Canadian Entomologist, 125: 919930.CrossRefGoogle Scholar
Latty, T.M.Reid, M.L. 2010. Who goes first? Condition and danger dependent pioneering in a group-living beetle (Dendroctonus ponderosae). Behavioral Ecology and Sociobiology, 64: 639646.CrossRefGoogle Scholar
Lease, H.M.Wolf, B.O. 2011. Lipid content of terrestrial arthropods in relation to body size, phylogeny, ontogeny and sex. Physiological Entomology, 36: 2938.CrossRefGoogle Scholar
Lih, M.P.Stephen, F.M. 1996. Relationship of host tree diameter to within-tree southern pine beetle (Coleoptera: Scolytidae) population dynamics. Environmental Entomology, 25: 736742.CrossRefGoogle Scholar
Lomnicki, A. 1980. Regulation of population density due to individual differences and patchy environment. Oikos, 35: 185193.CrossRefGoogle Scholar
Lyon, R.L. 1958. A useful secondary sex character in Dendroctonus bark beetles. The Canadian Entomologist, 90: 582584.CrossRefGoogle Scholar
Marden, J.H. 2000. Variability in the size, composition, and function of insect flight muscles. Annual Review of Physiology, 62: 157178.CrossRefGoogle ScholarPubMed
McGhehey, J.H. 1971. Female size and egg production of the mountain pine beetle, Dendroctonus ponderosae Hopkins. Information Report NOR-X-9. Canadian Forest Service, Northern Forest Research Centre, Edmonton.Google Scholar
Mitchell, R.G.Preisler, H.K. 1991. Analysis of spatial patterns of lodgepole pine attacked by outbreak populations of the mountain pine beetle. Forest Science, 37: 13901408.Google Scholar
Pureswaran, D.S.Borden, J.H. 2003. Is bigger better? Size and pheromone production in the mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Scolytidae). Journal of Insect Behavior, 16: 765782.CrossRefGoogle Scholar
R Development Core Team. 2008. R: a language and environment for statistical computing, version 2.4.1. R Foundation for Statistical Computing, Vienna, Austria.Google Scholar
Raffa, K.F. 2001. Mixed messages across multiple trophic levels: the ecology of bark beetle chemical communication systems. Chemoecology, 11: 4965.CrossRefGoogle Scholar
Raffa, K.F.Berryman, A.A. 1983. The role of host plant resistance in the colonization behavior and ecology of bark beetles. Ecological Monographs, 53: 2749.CrossRefGoogle Scholar
Reid, M.L.Baruch, O. 2010. Mutual mate choice by mountain pine beetles: size-dependence but not size-assortative mating. Ecological Entomology, 35: 6976.CrossRefGoogle Scholar
Reid, M.L.Glubish, S.S. 2001. Tree size and growth history predict breeding densities in Douglas-fir beetles (Scolytidae) in fallen trees. The Canadian Entomologist, 133: 697704.CrossRefGoogle Scholar
Reid, M.L.Purcell, J.C.R. 2011. Condition-dependent tolerance of monoterpenes in an insect herbivore. Arthropod-Plant Interactions, 5: 331337. doi: 10.1007/s11829-011-9137-4.CrossRefGoogle Scholar
Reid, M.L.Robb, T. 1999. Death of vigorous trees benefits bark beetles. Oecologia, 120: 555562.CrossRefGoogle ScholarPubMed
Reid, R.W. 1962. Biology of the mountain pine beetle, Dendroctonus monticolae Hopkins, in the east Kootenay region of British Columbia. II. Behaviour in the host, fecundity, and internal changes in the female. The Canadian Entomologist, 94: 605613.CrossRefGoogle Scholar
Reid, R.W. 1963. Biology of the mountain pine beetle, Dendroctonus monticolae Hopkins, in the east Kootenay region of British Columbia. III. Interaction between the beetle and its host, with emphasis on brood mortality and survival. The Canadian Entomologist, 95: 225238.CrossRefGoogle Scholar
Robertson, I.C. 1998. Flight muscle changes in male pine engraver beetles during reproduction: the effects of body size, mating status and breeding failure. Physiological Entomology, 23: 7580.CrossRefGoogle Scholar
Robertson, I.C.Roitberg, B.D. 1998. Duration of paternal care in pine engraver beetles: why do larger males care less? Behavioral Ecology and Sociobiology, 43: 379386.CrossRefGoogle Scholar
Roff, D.A. 1991. Life history consequences of bioenergetic and biomechanical constraints on migration. American Zoologist, 31: 205215.CrossRefGoogle Scholar
Safranyik, L. 1976. Size- and sex-related emergence and survival in cold storage of mountain pine beetle adults. The Canadian Entomologist, 108: 209212.CrossRefGoogle Scholar
Safranyik, L.Carroll, A.L. 2006. The biology and epidemiology of the mountain pine beetle in lodgepole pine forests. In The mountain pine beetle: a synthesis of biology, management, and impacts on lodgepole pine. Edited by L. Safranyik and B. Wilson. Canadian Forest Service, Pacific Forestry Centre, Victoria, British Columbia. pp. 366.Google Scholar
Safranyik, L.Jahren, R. 1970. Emergence patterns of the mountain pine beetle from lodgepole pine. Canadian Forest Service, Pacific Forestry Centre, Victoria, BC, Bi-monthly Research Notes, 26: 1119.Google Scholar
Safranyik, L., Shrimpton, D.M., Whitney, H.S. 1975. An interpretation of the interaction between lodgepole pine, the mountain pine beetle and its associated blue stain fungi in western Canada. In Management of lodgepole pine ecosystems. Edited by D.M. Baumgartner. Washington State University Cooperative Extension Service, Pullman, Washington, United States of America. pp. 406428.Google Scholar
Sallé, A.Raffa, K.F. 2007. Interactions among intraspecific competition, emergence patterns, and host selection in Ips pini (Coleoptera: Scolytinae). Ecological Entomology, 32: 162171.CrossRefGoogle Scholar
Slansky, F. Jr.Haack, R.A. 1986. Age-specific flight behavior in relation to body weight and lipid content of Ips calligraphus reared in slash pine bolts with thick or thin inner bark (phloem). Entomologia Experimentalis et Applicata, 40: 197207.CrossRefGoogle Scholar
Steed, B.E.Wagner, M.R. 2004. Importance of log size on host selection and reproductive success of Ips pini (Coleoptera: Scolytidae) in Ponderosa pine slash of northern Arizona and western Montana. Journal of Economic Entomology, 97: 436450.CrossRefGoogle ScholarPubMed
Trzcinski, M.K.Reid, M.L. 2009. Intrinsic and extrinsic determinants of mountain pine beetle population growth. Agricultural and Forest Entomology, 11: 185196.CrossRefGoogle Scholar
Wallin, K.F.Raffa, K.F. 2000. Influences of host chemicals and internal physiology on the multiple steps of postlanding host acceptance behavior of Ips pini (Coleoptera: Scolytidae). Environmental Entomology, 29: 442453.CrossRefGoogle Scholar
Wallin, K.F.Raffa, K.F. 2004. Feedback between individual host selection behavior and population dynamics in an eruptive herbivore. Ecological Monographs, 74: 101116.CrossRefGoogle Scholar
Williams, W.I.Robertson, I.C. 2008. Using automated flight mills to manipulate fat reserves in Douglas-fir beetles (Coleoptera: Curculionidae). Environmental Entomology, 37: 850856.CrossRefGoogle ScholarPubMed