Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T13:50:56.954Z Has data issue: false hasContentIssue false

ARTHROPOD BIODIVERSITY FROM POPULUS COARSE WOODY MATERIAL IN NORTH-CENTRAL ALBERTA: A REVIEW OF TAXA AND COLLECTION METHODS

Published online by Cambridge University Press:  31 May 2012

H.E. James Hammond
Affiliation:
Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9

Abstract

Arthropods associated with Populus coarse woody material (CWM) were sampled from aspen-mixedwood stands in north-central Alberta using rearings from wood bolts and flight-intercept traps attached to snags. More than 39 000 arthropod specimens were collected over 3 years, comprised mainly of Coleoptera, Diptera, Hymenoptera, and Acari. Detailed analyses are provided to compare the number of species, standardized abundance, and trophic structure between collecting methods for 257 saproxylic species of Coleoptera. Abundance of beetle species, from both rearings and window traps, and rarefaction estimates of species richness indicate little difference between methods with respect to expected number of species. However the abundance of particular beetle families differed significantly between methods, with the Aderidae, Anthicidae, and Scaphidiidae collected mainly in rearings and the Micropeplidae, Bostrichidae, Cephaloidae, Clambidae, Salpingidae, and Tenebrionidae more commonly collected with window traps. Fungivorous and predatory beetles were more abundant in CWM than wood borers, scavengers, or taxa with undetermined feeding habits, but the two methods revealed similar overall trophic structure. To census the variability in saproxylic arthropod faunas from CWM, a combination of collecting methods is recommended.

Résumé

Les arthropodes associés aux débris ligneuxs grossiers (CWM) dérivés de Populus ont été échantillonnés dans des boisés mixtes à dominance de trembles dans le centre nord de l’Alberta; les, élevages à partir de tronçons de bois et l’interception des insectes au vol au moyen de pièges attachés à des chicots d’arbres ont servi de méthodes d’échantillonnage. Plus de 39 000 arthropodes ont été récoltés en 3 ans, surtout des coléoptères, diptères, hyménoptères et acariens. Des analyses détaillées basées sur le nombre d’espèces, l’abondance normalisée et la structure trophique ont permis de comparer les méthodes de récolte de 257 espèces saproxylophages de coléoptères. L’abondance des espèces, telle que déduite d’après les résultats des élevages et des prises au piège, de même que les estimations par raréfaction de la richesse en espèces indiquent qu’il y a peu de différences entre les méthodes quant au nombre estimé d’espèces. Cependant, l’abondance des coléoptères de familles particulières a différé selon la méthode utilisée et les Aderidae, Anthicidae et Scaphidiidae ont été récoltés surtout dans les élevages, alors que les Micropeplidae, Bostrichidae, Cephaloidae, Clambidae, Salpingidae et Tenebrionidae ont été récoltés surtout dans les pièges. Les coléoptères fongivores et prédateurs étaient plus abondants dans les débris ligneux que les perce-bois, les détritivores ou les taxons de groupes trophiques indéterminés, mais les deux méthodes ont mis en lumière une structure trophique globale similaire. Pour évaluer la variabilité des faunes d’arthropodes saproxylophages dans les débris ligneux grossiers, il vaut mieux utiliser une combinaison de plusieurs méthodes d’échantillonnage.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrahamson, L.P., Chu, H.-M., and Norris, D.M.. 1967. Symbiotic interrelationships between microbes and ambrosia beetles. II. The organs of microbial transport and perpetuation in Trypodendron betulae and T. retusum (Coleoptera: Scolytidae). Annals of the Entomological Society of America 60: 11071110.CrossRefGoogle Scholar
Ausmus, B.S. 1977. Regulation of wood decomposition rates by arthropod and annelid populations. Ecological Bulletin (Stockholm) 25: 180192.Google Scholar
Battigelli, J.P., Birch, S.M., and Marshall, V.G., 1994. Soil fauna in two distinct but adjacent forest types on northern Vancouver Island, British Columbia. Canadian Journal of Forestry Research 24: 15571566.CrossRefGoogle Scholar
Barter, G.W. 1965. Survival and development of the bronze poplar borer Agrilus liragus Barter and Brown. The Canadian Entomologist 97: 10631068.CrossRefGoogle Scholar
Belicek, J. 1976. Coccinellidae of western Canada and Alaska with analyses of the transmont zoogeographic relationships between the fauna of British Columbia and Alberta (Insecta: Coleoptera: Coccinellidae). Quaestiones Entomologicae 12: 283409.Google Scholar
Biological Survey of Canada. 1994. Terrestrial arthropod biodiversity: planning a study and recommended sampling techniques. Bulletin of the Entomological Society of Canada, Supplement 26: 133.Google Scholar
Blackman, M.W. 1924. Succession of insects breeding in the bark and wood of dying, dead and decaying hickory. Syracuse University, New York State College of Forestry, Technical Publication 17.Google Scholar
Blackman, M.W., and Stage, H.H.. 1918. Notes on insects bred from the bark and wood of American Larch. Syracuse University, New York State College of Forestry, Technical Publication 10.Google Scholar
Bousquet, Y. (editor). 1991. Checklist of Beetles of Canada and Alaska. Agriculture Canada Research Branch Publication 1861/E.Google Scholar
Brewer, S.D., Beck, R.A., and Roeper, R.A.. 1988. Observations of the gallery habits of Trypodendron retusum (Coleoptera: Scolytidae) infesting aspen in central Michigan. Great Lakes Entomologist 21: 58.Google Scholar
Bright, D.E. 1976. The Insects and Arachnids of Canada, Part 2. The Bark Beetles of Canada and Alaska. Coleoptera: Scolytidae. Agriculture Canada Research Branch Publication 1576.Google Scholar
Bright, D.E. 1987. The Insects and Arachnids of Canada, Part 15. The Metallic Wood-boring Beetles of Canada and Alaska. Coleoptera: Buprestidae. Agriculture Canada Research Branch Publication 1810.Google Scholar
Campbell, J.M. 1968. A revision of the New World Micropeplinae (Coleoptera: Staphylinidae) with rearrangement of the world species. The Canadian Entomologist 100: 225268.CrossRefGoogle Scholar
Chandler, D.S. 1991. Comparison of some slime-mold and fungus feeding beetles (Coleoptera: Eucinetoidea, Cucujoidea) in an old-growth and 40 year old forest in New Hampshire. The Coleopterists Bulletin 45: 239256.Google Scholar
Crowson, R.A. 1981. The Biology of the Coleoptera. Greystone Press, Antrim, Northern Ireland.Google Scholar
Daly, H.V., Doyen, J.T., and Ehrlich, P.R.. 1978. Introduction to Insect Biology and Diversity. McGraw-Hill, New York.Google Scholar
Danks, H.V. 1979. Summary of the diversity of Canadian terrestrial arthropods. pp. 240245in Danks, H.V. (Ed.), Canada and Its Insect Fauna. Memoirs of the Entomological Society of Canada 108.Google Scholar
Danks, H.V. 1993 a. Patterns of diversity in the Canadian insect fauna. Memoirs of the Entomological Society of Canada 165: 5174.CrossRefGoogle Scholar
Danks, H.V. 1993 b. The biodiversity crisis, a national initiative: the biological survey of Canada (Terrestrial Arthropods). Association of Systematics Collections Newsletter 21: 1722.Google Scholar
Danks, H.V., Wiggins, G.B., and Rosenberg, D.M.. 1987. Ecological collections and long-term monitoring. Bulletin of the Entomological Society of Canada 19: 1618.Google Scholar
Evans, G. 1975. The Life of Beetles. George Allen and Unwin Ltd., London, England.Google Scholar
Everitt, B.S. 1977. The analysis of contingency tables. Chapman and Hall, London, England.CrossRefGoogle Scholar
Fager, E.W. 1968. The community of invertebrates in decaying oak wood. Journal of Animal Ecology 37: 121142.CrossRefGoogle Scholar
Fischer, A.G. 1960. Latitudinal variation in organic diversity. Evolution 14: 6481.CrossRefGoogle Scholar
Graham, S.A. 1925. The felled tree trunk as an ecological unit. Ecology 6: 397411.CrossRefGoogle Scholar
Harmon, M.E., Franklin, J.F.Swanson, F.J.Sollins, P.Gregory, S.V.Lattin, J.D.Anderson, N.H.Cline, S.P.Aumen, N.G.Sedell, J.R.Lienkaemper, G.W.Cromack, K. Jr., and Cummins, K.W.. 1986. Ecology of coarse woody debris in temperate ecosystems. Advances in Ecological Research 15: 133302.CrossRefGoogle Scholar
Heliövaara, K., and Väisänen, R.. 1984. Effects of modern forestry on northwestern European forest invertebrates: a synthesis. Acta Forestalia Fennica 189: 132.Google Scholar
Howden, H.F., and Vogt, G.B.. 1951. Insect communities of standing dead pine (Pinus virginiana Mill). Annals of the Entomological Society of America 44: 581595.CrossRefGoogle Scholar
Hurlbert, S.H. 1971. The non-concept of species diversity: a critique and alternative parameters. Ecology 52: 577586.CrossRefGoogle Scholar
Irmler, U., Heller, K., and Warning, J.. 1996. Age and tree species as factors influencing the populations of insects living in dead wood (Coleoptera, Diptera: Sciaridae, Mycetophilidae). Pedobiologia 40: 134148.CrossRefGoogle Scholar
Ives, W.G.H., and Wong, H.R.. 1988. Tree and Shrub Insects of the Prairie Provinces. Canadian Forestry Service Northern Forest Research Centre Information Report NOR–X–292.Google Scholar
Jonsell, M., and Nordlander, G.. 1995. Field attraction of Coleoptera to odours of the wood decaying polypores Fomitopsis pinicola and Fomes fomentarius. Annales Zoologica Fennici 32: 391402.Google Scholar
Käila, L. 1993. A new method for collecting quantitative samples of insects associated with decaying wood or wood fungi. Entomologica Fennica 29: 2123.CrossRefGoogle Scholar
Käila, L., Martikainen, P.Punttila, P., and Yakovlev, E.. 1994. Saproxylic beetles (Coleoptera) on dead birch trunks decayed by different polypore species. Annales Zoologica Fennici 31: 97107.Google Scholar
Käila, L., Martikainen, P., and Punttila, P.. 1997. Dead trees left in clear-cuts benefit saproxylic Coleoptera adapted to natural disturbances in boreal forest. Biodiversity and Conservation 6: 118.CrossRefGoogle Scholar
Krebs, C.J. 1989. Ecological Methodology. Harper-Collins Publishing, New York.Google Scholar
Lawrence, J.F. 1971. Revision of the North American Ciidae (Coleoptera). Bulletin of the Museum of Comparative Zoology 142: 419522.Google Scholar
Lindsey, J.P., and Gilbertson, R.L.. 1978. Basidiomycetes that Decay Aspen in North America. J. Cramer, Lehre, West Germany.Google Scholar
MacArthur, J.W. 1975. Environmental fluctuations and species diversity. pp. 7480in Cody, M.L., and Diamond, J.M. (Eds.), Ecology and Evolution of Communities. Harvard University Press, Cambridge, Massachusetts.Google Scholar
Magurran, A.E. 1988. Ecological Diversity and Its Measurement. Princeton University Press, Princeton, New Jersey.CrossRefGoogle Scholar
Martel, J., Mauffette, Y., and Tousignant, S.. 1991. Secondary effects of canopy dieback: the epigeal carabid fauna in Quebec Appalachian maple forests. The Canadian Entomologist 123: 851859.CrossRefGoogle Scholar
May, R.M. 1975. Patterns of species abundance and diversity. pp. 81120in Cody, M.L., and Diamond, J.M. (Eds.), Ecology and Evolution of Communities. Harvard University Press, Cambridge, Massachusetts.Google Scholar
McGill, W.B., and Spence, J.R.. 1985. Soil fauna and soil structure: feedback between size and architecture. Quaestiones Entomologicae 21: 645654.Google Scholar
Morrill, W.L., Lester, D.G., and Wrona, A.E.. 1990. Factors affecting efficacy of pitfall traps for beetles (Coleoptera: Carabidae and Tenebrionidae). Journal of Entomological Science 25: 284293.CrossRefGoogle Scholar
Niemelä, J., Langor, D., and Spence, J.R.. 1993. Effects of clear-cut harvesting on Boreal ground-beetle assemblages (Coleoptera: Carabidae) in western Canada. Conservation Biology 7: 551562.CrossRefGoogle Scholar
Palm, T. 1951. Die Holz- und Rinden-Käfer der nordscwedischen Laubbäume. Meddelanden fran Statens Skogsforskningsinstitut Band 40: 1242.Google Scholar
Palm, T. 1959. Die Holz- und Rinden-Käfer der süd- und mittelschwedischen Laubbäume. Opuscula Entomologica Supplementum 16: 1375.Google Scholar
Peck, S.B. 1990. Silphidae and the associated families Agyrtidae and Leiodidae. pp. 11131136in Dindal, D.L. (Ed.), Soil Biology Guide. John Wiley and Sons, New York.Google Scholar
Pielou, D.P., and Verma, A.N.. 1968. The arthropod fauna associated with the birch bracket fungus, Polyporus betulinus, in Eastern Canada. The Canadian Entomologist 100: 11791199.CrossRefGoogle Scholar
Ponomarenko, A.G. 1995. The geological history of beetles. pp. 155172in Pakaluk, J., and Slipinski, S.A. (Eds.), Biology, Phylogeny, and Classification of the Coleoptera: Papers Celebrating the 80th Birthday of Roy A. Crowson. Muzeum i Instytut Zoologii, PAN, Warszawa.Google Scholar
Reichle, D.E. 1977. The role of soil invertebrates in nutrient cycling. Ecological Bulletin (Stockholm) 25: 145156.Google Scholar
Savely, H.E. 1939. Ecological relations of certain animals in dead pine and oak logs. Ecological Monographs 9: 323385.CrossRefGoogle Scholar
Siitonen, J. 1994. Decaying wood and saproxylic Coleoptera in two old spruce forests: a comparison based on two sampling methods. Annales Zoologica Fennici 31: 8996.Google Scholar
Siitonen, J., and Martikainen, P.. 1994. Occurrence of rare and threatened insects living on decaying Populus tremula: a comparison between Finnish and Russian Karelia. Scandinavian Journal of Forestry Research 9: 185191.CrossRefGoogle Scholar
Smetana, A. 1988. Review of the family Hydrophilidae of Canada and Alaska (Coleoptera). Memoirs of the Entomological Society of Canada 142.Google Scholar
Speight, M.C.D. 1989. Saproxylic Invertebrates and their Conservation. Council of Europe Publication, Strasbourg.Google Scholar
Spence, J.R., and Niemelä, J.K.. 1994. Sampling carabid assemblages with pitfall traps: the madness and the method. The Canadian Entomologist 126: 881894.CrossRefGoogle Scholar
Spence, J.R., Langor, D.W.Niemelä, J., Carcamo, H.A., and Currie, C.R.. 1996. Northern forestry and carabids: the case for concern about old-growth species. Annales Zoologici Fennica 33: 173184.Google Scholar
Spence, J.R., Langor, D.W., Hammond, H.E.J., and Pohl, G.R.. 1997. Beetle abundance and diversity in a boreal mixedwood forest. pp. 285299in Watt, A.D., and Stork, N.E. (Eds.), Forests and Insects, Proceedings of the 18th Royal Entomological Society Symposium, London, 13–15 September 1995. Chapman and Hall Ltd., London. In press.Google Scholar
Swift, M.J. 1977. The roles of fungi and animals in the immobilisation and release of nutrient elements from decomposing branch-wood. Ecological Bulletin (Stockholm) 25: 193202.Google Scholar
Väisänen, R., Bistr, O.öm, and Heliövaara, K.. 1993. Sub-cortical Coleoptera in dead pines and spruces: is primeval species composition maintained in managed forests? Biodiversity and Conservation 2: 95113.CrossRefGoogle Scholar
Wagner, T.L., Mattson, W.J., and Witter, J.A., 1977. A survey of soil invertebrates in two aspen forests in northern Minnesota. US Forest Service General Technical Report NC–40.Google Scholar
Wallace, H.R. 1953. The ecology of the insect fauna of pine stumps. Journal of Animal Ecology 22: 154177.CrossRefGoogle Scholar
Wheeler, Q., and Blackwell, M.. 1984. Fungus–Insect Relationships: Perspectives in Ecology and Evolution. Columbia University Press, New York.Google Scholar
Wilson, E.O. 1992. The Diversity of Life. W.W. Norton and Company, New York.Google Scholar
Wood, S.L. 1982. The bark and ambrosia beetles of North and Central America (Coleoptera: Scolytidae), a taxonomic monograph. Great Basin Naturalist Memoirs 6.Google Scholar
Younan, E.G., and Hain, F.P.. 1982. Evaluation of five trap designs for sampling insects associated with severed pines. The Canadian Entomologist 114: 789796.CrossRefGoogle Scholar