Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-28T03:31:09.948Z Has data issue: false hasContentIssue false

ANTIBIOSIS OF PREFERRED AND NON-PREFERRED HOST-PLANTS FOR THE FLEA BEETLE, PHYLLOTRETA CRUCIFERAE (GOEZE) (COLEOPTERA: CHRYSOMELIDAE)1

Published online by Cambridge University Press:  31 May 2012

P. Palaniswamy
Affiliation:
Agriculture and Agri-Food Canada, Research Centre, 195 Dafoe Road, Winnipeg, Manitoba, Canada R3T 2M9
R.J. Lamb*
Affiliation:
Agriculture and Agri-Food Canada, Research Centre, 195 Dafoe Road, Winnipeg, Manitoba, Canada R3T 2M9
R.P. Bodnaryk
Affiliation:
Agriculture and Agri-Food Canada, Research Centre, 195 Dafoe Road, Winnipeg, Manitoba, Canada R3T 2M9
*
2Author to whom correspondence should be addressed.

Abstract

The antibiosis of crucifers to flea beetles, Phyllotreta cruciferae (Goeze), was compared for Brassica juncea L., B. napus L., and B. rapa L. with low antixenosis, B. carinata L. and Sinapis alba L. with moderate antixenosis, and Thlaspi arvense L. with high antixenosis. Adult flea beetles collected from the field in early spring fed actively on intact or excised leaves of all plants except T. arvense. The beetles survived, and gained weight and fat on the Brassica species and S. alba, but not on intact foliage of T. arvense. No antibiosis was detected in any of the Brassica species or in S. alba. Intact foliage of T. arvense was so antixenotic that beetles probably starved rather than suffered from antibiosis. A low level of antibiosis was detected in excised foliage of T. arvense where the antixenosis was lost. These experiments show that estimates of beetle survival, dry weight, and fat content can be used in the laboratory to test small numbers of candidate plants for antibiosis. However, the level of antibiosis appears to vary less among Brassica species and related plants than does the level of antixenosis, and so the latter is a more promising type of resistance for use against flea beetles in canola.

Résumé

L’antibiose contre l’Altise des crucifères, Phyllotreta cruciferae (Goeze), a été comparée chez diverses cmcifères, Brassica juncea L., B. napus L., et B. rapa L. à faible antixénose, chez B. carinata L. et Sinapis alba L. à antixénose moyenne et chez Thlaspi arvense L. à antixénose forte. Les altises adultes récoltées en nature tôt au printemps se sont nourries de feuilles intactes ou excisées de toutes les plantes sauf T. arvense. Les coléoptères ont survécu, subi des gains de masse et de graisses sur les espèces de Brassica et sur S. alba, mais par sur le feuillage intact de T. arvense. Aucune antibiose n’a été détectée chez les espèces de Brassica ou chez S. alba. Le feuillage intact de T. arvense était doté d’une telle antixénose que les coléoptères ont probablement évité de manger et n’ont pas subi l’antibiose. Une faible antibiose a été détectée dans le feuillage excisé de T. arvense où il n’y avait plus d’antixénose. Ces expériences démontrent que les estimations de la survie des altises, leur masse sèche et leur contenu en graisses peuvent être utilisés en laboratoire pour mesurer l’antibiose de petits nombres de plantes particulières. Cependant, l’importance de l’antibiose semble varier moins chez les diverses espèces de Brassica et autres plantes apparentées que l’importance de l’antixénose et il semble donc que l’antibiose représente un type plus prometteur de résistance contre les altises dans les plantations de colza.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

Winnipeg Research Centre Contribution No. 1583.

References

Anderson, M.D., Peng, C., and Weiss, M.J.. 1992. Crambe abyssinia Hochst., as a flea beetle resistant crop (Coleoptera: Chrysomelidae). Journal of Economic Entomology 85: 594600.CrossRefGoogle Scholar
Bodnaryk, R.P. 1992. Distinctive leaf feeding patterns on oilseed rapes and related Brassicaceae by flea beetles, Phyllotreta cruciferae (Goeze) (Coleoptera: Chrysomelidae). Canadian Journal of Plant Science 72: 575581.Google Scholar
Bodnaryk, R.P., and Lamb, R.J.. 1991. Mechanisms of resistance to the flea beetle, Phyllotreta cruciferae (Goeze), in yellow mustard seedlings, Sinapis alba L. Canadian Journal of Plant Science 71: 1320.CrossRefGoogle Scholar
Bonnemaison, L. 1965. Insect pests of crucifers and their control. Annual Review of Entomology 10: 233256.Google Scholar
Brandt, R.N., and Lamb, R.J.. 1993. Distribution of feeding damage by Phyllotreta cruciferae (Goeze) (Coleoptera: Chrysomelidae) on oilseed rape and mustard seedlings in relation to crop resistance. The Canadian Entomologist 125: 10111021.Google Scholar
Brandt, R.N., and Lamb, R.J.. 1994. Importance of tolerance and growth rate in the resistance of oilseed rapes and mustards to flea beetles, Phyllotreta cruciferae (Goeze) [Coleoptera: Chrysomelidae]. Canadian Journal of Plant Science 74: 169176.Google Scholar
Brett, C.H., and Rudder, J.D.. 1966. Resistance of 30 commercial cruciferous varieties to the striped flea beetle, Phyllotreta striolata. Journal of Economic Entomology 59: 769.CrossRefGoogle Scholar
Burgess, L., and Wiens, J.E.. 1980. Dispensing allylisothiocyanate as an attractant for trapping crucifer-feeding flea beetles. The Canadian Entomologist 112: 9397.Google Scholar
Feeny, P., Paauwe, K.L., and Demong, N.J.. 1970. Flea beetles and mustard oils: Host plant specificity of Phyllotreta cruciferae and P. striolata adults (Coleoptera: Chrysomelidae). Annals of the Entomological Society of America 63: 832841.CrossRefGoogle Scholar
Kogan, M., and Ortman, E.F.. 1978. Antixenosis — a new term proposed to define Painter's “non-preference” modality of resistance. Bulletin of the Entomological Society of America 24: 175176.Google Scholar
Lamb, R.J. 1988. Assessing the susceptibility of crucifer seedlings to flea beetle (Phyllotreta spp.) damage. Canadian Journal of Plant Science 68: 8593.Google Scholar
Lamb, R.J. 1989. Entomology of oilseed Brassica crops. Annual Review of Entomology 34: 211229.CrossRefGoogle Scholar
Lamb, R.J., and Palaniswamy, P.. 1990. Host discrimination by a crucifer-feeding flea beetle, Phyllotreta striolata (F.) (Coleoptera: Chrysomelidae). The Canadian Entomologist 122: 817824.Google Scholar
Lamb, R.J., and Turnock, W.J.. 1982. Economics of insecticidal control of flea beetles (Coleoptera: Chrysomelidae) attacking rape in Canada. The Canadian Entomologist 114: 827840.Google Scholar
Lamb, R.J., McVetty, P.B.E., Palaniswamy, P., Bodnaryk, R.P., and Jeong, S.E.. 1993 a. Susceptibility of inbred lines of oilseed rape, Brassica napus, to feeding damage by the crucifer flea beetle, Phyllotreta cruciferae (Goeze) [Coleoptera: Chrysomelidae], and its inheritance. Canadian Journal of Plant Science 73: 615623.CrossRefGoogle Scholar
Lamb, R.J., Palaniswamy, P., Pivnick, K.A., and Smith, M.A.H.. 1993 b. A selection of oilseed rape, Brassica rapa L., with resistance to flea beetles, Phyllotreta cruciferae (Goeze) (Coleoptera: Chrysomelidae). The Canadian Entomologist 125: 703713.Google Scholar
Lewis, A.C. 1982. Conditions of feeding preference for wilted sunflower in the grasshopper Melanoplus differentialis. pp. 4956in Proceedings of the 5th International Symposium on Insect–Plant Relationships. Centre for Agricultural Publishing and Documentation, Wageningen, Netherlands.Google Scholar
Painter, R.H. 1951. Insect Resistance in Crop Plants. University of Kansas, Lawrence, KS. 521 pp.Google Scholar
Palaniswamy, P., and Lamb, R.J., 1992. Host preferences of the flea beetles, Phyllotreta cruciferae and P. striolata (Coleoptera: Chrysomelidae) for crucifer seedlings. Journal of Economic Entomology 85: 743752.CrossRefGoogle Scholar
Palaniswamy, P., and Lamb, R.J., 1993. Wound-induced antixenotic resistance to flea beetles, Phyllotreta cruciferae (Goeze) (Coleoptera: Chrysomelidae), in crucifers. The Canadian Entomologist 125: 903912.CrossRefGoogle Scholar
Palaniswamy, P., Lamb, R.J., and McVetty, P.B.E.. 1992. Screening for antixenosis resistance to flea beetles, Phyllotreta spp. (Coleoptera: Chrysomelidae), in oilseed rape and related crucifers. The Canadian Entomologist 124: 895906.Google Scholar
Panda, N. 1979. Principles of Host-plant Resistance to Insect Pests. Allanheld, Osmum and Co., New York, NY. 386 pp.Google Scholar
Putnam, L.G. 1977. Response of four Brassica seed crop species to attack by the crucifer flea beetle, Phyllotreta cruciferae. Canadian Journal of Plant Science 57: 987989.CrossRefGoogle Scholar
SAS Institute Inc. 1990. SAS/STAT User's Guide, Version 6 Edition. SAS Institute Inc., Cary, NC. 1686 pp.Google Scholar
Van Handel, E. 1985. Rapid determination of total lipids in mosquitos. Journal of the American Mosquito Control Association 1: 302304.Google Scholar
Weiss, M.J., McLeod, P., Schatz, B.G., and Hanson, B.K.. 1991. The potential for insecticidal management of flea beetles (Coleoptera: Chrysomelidae) attacking canola. Journal of Economic Entomology 84: 15971603.Google Scholar
Wheatley, G.A., and Finch, S.. 1984. Effects of oilseed rape 9 on the status of insect pests of vegetable brassicas. pp. 807814in Pests and Diseases, British Crop Protection Conference, Brighton, UK.Google Scholar