Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-28T04:46:36.732Z Has data issue: false hasContentIssue false

ANALYSIS OF A SIMULATION MODEL OF NORTHERN CORN ROOTWORM, DIABROTICA BARBERI SMITH AND LAWRENCE (COLEOPTERA: CHRYSOMELIDAE), DYNAMICS IN FIELD CORN, WITH IMPLICATIONS FOR POPULATION MANAGEMENT

Published online by Cambridge University Press:  31 May 2012

Steven E. Naranjo
Affiliation:
Department of Entomology, Comstock Hall, Cornell University, Ithaca, New York, USA14853
Alan J. Sawyer
Affiliation:
USDA-ARS, Plant Protection Research Unit, U.S. Plant, Soil and Nutrition Laboratory, Tower Road, Ithaca, New York, USA14853

Abstract

Analyses were performed on a simulation model describing the population dynamics of adult Diabrotica barberi Smith and Lawrence in field corn. Overall goals were to gain a better understanding of the dynamics of this insect/plant system and explore possibilities for improved population management. Parametric sensitivity analyses revealed that model behavior was moderately sensitive to changes in the timing of female emergence, rates of immature female dispersal at peak flower, fecundity, and rates of reproductive development. Model behavior was highly sensitive to changes in age-specific oviposition rates, and to factors determining the seasonal timing and duration of the flowering period of corn. Alteration of planting dates, variations in seasonal temperature patterns, and year-to-year variation in beetle dispersal patterns greatly affected the simulated relationship between adult abundance, oviposition, and crop phenology, and the synchronization of beetle populations with flowering corn. Factorial analyses indicated that manipulation of planting dates, variety, and the duration of the flowering period represent equivalent alternatives for reducing site-specific oviposition. Factorial analyses further suggested that the timing of emergence and dispersal, relative to flowering, are the major factors contributing to the presence of beetles during the flowering period, but their relative contributions depend on the seasonal time of flowering. The timing of emergence is more important in early-flowering fields but dispersal becomes more important for fields flowering later in the season. Simulation was used to examine the relationship between adult abundance, oviposition, and crop phenology and to formalize hypothetical improvements in current action thresholds for making recommendations for corn rootworm control based on adult sampling. Overall, analyses have allowed important insights into the behavior of this insect/plant system.

Résumé

Des analyses ont été faites à l’aide d’un modèle de simulation de la dynamique des populations adultes de la chrysomèle des racines du maïs, Diabrotica barberi Smith et Lawrence, en champ de maïs. Les objectifs d’ensemble étaient l’acquisition d’une compréhension plus complète de la dynamique du système plante–insecte et l’examen des possibilités d’amélioration de la régie des populations du ravageur. Des analyses paramétriques de sensibilité ont montré que le modèle était modérément sensible au déplacement du moment d’émergence des femelles, et à l’incidence de dispersion au pic de floraison, à la fécondité et à la vitesse de développement reproducteur des femelles matures. Les résultats de modélisation étaient hautement sensibles aux variations du taux spécifique de l’âge de la ponte, et aux facteurs déterminant l’époque saisonnière et la durée de la floraison. La modification de la date de semis, des fluctuations de température, et de la variation inter-annuelle des patrons de dispersion de la chrysomèle ont affecté grandement la relation simulé entre l’abondance des adultes, la ponte et la phénologie de la culture, et la synchronie entre les populations de chrysomèle et le maïs en fleur. Des analyses factorielles ont indiqué que la manipulation de la date de semis, de la variété et de la durée de la floraison sont des alternatives pouvant réduire la ponte dans un champ. Des analyses factorielles ont aussi indiqué que le moment d’émergence et la dispersion, par rapport à la floraison, sont les facteurs majeurs qui contribuent à la présence de la chrysomèle durant la floraison, mais que leur contribution relative dépend de l’époque saisonnière de floraison. Le moment d’émergence est plus important durant dans les champs fleurissant tôt, mais la dispersion devient plus importante dans les champs qui fleurissent tard en saison. On a utilisé la simulation pour examiner la relation entre l’abondance des adultes, la ponte, et la phénologie de la culture, et aussi afin de formaliser des hypothèses d’amélioration des seuils courants de décision pour fins de recommandation en matière de répression de la chrysomèle sur la base de la surveillance des adultes. Dans l’ensemble, les analyses ont permis d’obtenir une compréhension approfondie du comportement de ce système insecte–plante.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bergman, M.K., and Turpin, F.T.. 1984. Impact of corn planting date on the population dynamics of corn rootworms (Coleoptera: Chrysomelidae). Environ. Ent. 13: 898901.CrossRefGoogle Scholar
Chiang, H.C. 1973. Bionomics of the northern and western corn rootworms. A. Rev. Ent. 18: 4772.CrossRefGoogle Scholar
Cinereski, J.E., and Chiang, H.C.. 1968. The pattern of movements of adults of the northern corn rootworm inside and outside of corn fields. J. econ. Ent. 61: 1531–1516.Google Scholar
Cornell Recommends For Field Crops. 1986. New York State College of Agriculture and Life Sciences, Cornell University, Ithaca, New York.Google Scholar
Dominique, C.R., and Yule, W.N.. 1984. Bionomics of the northern corn rootworm, Diabrotica longicornus (Coleoptera: Chrysomelidae) in Quebec. Rev. Ent. Que. 29: 1216.Google Scholar
Foster, R.E., Tollefson, J.J., Nyrop, J.P., and Hein, G.L.. 1986. Value of adult corn rootworm population estimates in pest management decision making. J. econ. Ent. 79: 303309.CrossRefGoogle Scholar
Godfrey, L.D., and Turpin, F.T.. 1983. Comparison of western corn rootworm (Coleoptera: Chrysomelidae) adult populations and economic thresholds in first-year and continuous corn fields. J. econ. Ent. 76: 10281032.CrossRefGoogle Scholar
Haddock, R.C. 1984. Orientation and movement of the northern corn rootworm, Diabrotica barberi over large and small distances. Ph.D. dissertation, Cornell Univ., Ithaca, New York.Google Scholar
Hein, G.L., and Tollefson, J.J.. 1985. Seasonal oviposition of northern and western corn rootworms (Coleoptera: Chrysomelidae) in continuous cornfields. J. econ. Ent. 78: 12381241.CrossRefGoogle Scholar
Hill, R.E., and Mayo, Z.B.. 1974. Trap-corn to control corn rootworm. J. econ. Ent. 67: 748750.Google Scholar
Hill, R.E., and Mayo, Z.B.. 1980. Distribution and abundance of corn rootworm species as influenced by topography and crop rotation in eastern Nebraska. Environ. Ent. 9: 122127.CrossRefGoogle Scholar
Krysan, J.L. 1986. Introduction: biology, distribution, and identification of pest Diabrotica. pp. 124In Krysan, J.L., and Miller, T. A. (Eds.), Methods for the Study of Pest Diabrotica. Springer-Verlag, New York.CrossRefGoogle Scholar
Metcalf, R.L. 1986. Forward. In Krysan, J.L., and Miller, T.A. (Eds.), Methods for the Study of Pest Diabrotica. Springer Verlag, New York.Google Scholar
Musick, G.L., Chiang, H.C., Luckmann, W.H., Mayo, Z.B., and Turpin, F.T.. 1980. Impact of planting dates of field corn, Zea mays on beetle emergence and damage by the western, Diabrotica virgifera and the northern, D. longicornus, corn rootworm in the corn belt. Ann. ent. Soc. Am. 73: 207215.CrossRefGoogle Scholar
Naranjo, S.E., and Sawyer, A.J.. 1987. Reproductive biology and survival of Diabrotica barberi (Coleoptera: Chrysomelidae): effect of temperature, food, and seasonal time of emergence. Ann. ent. Soc. Am. 80: 841848.CrossRefGoogle Scholar
Naranjo, S.E., and Sawyer, A.J.. 1988 a. Impact of host plant phenology on the population dynamics and oviposition of the northern corn rootworm, Diabrotica barberi (Coleoptera: Chrysomelidae), in field corn. Environ. Ent. 17: 508521.CrossRefGoogle Scholar
Naranjo, S.E., and Sawyer, A.J.. 1988 b. A temperature and age-dependent simulation model of reproduction for the northern corn rootworm, Diabrotica barberi Smith and Lawrence (Coleoptera: Chrysomelidae). Can. Ent. 120: 117.CrossRefGoogle Scholar
Naranjo, S.E., and Sawyer, A.J.. 1989. A simulation model of northern corn rootworm, Diabrotica barberi Smith and Lawrence (Coleoptera: Chrysomelidae), population dynamics and oviposition: significance of host plant phenology. Can. Ent. 121: 169191.CrossRefGoogle Scholar
Shannon, R.E. 1975. Systems Simulation: The Art and Science. Prentice Hall, Inc., Englewood Cliffs, New Jersey. 387 pp.Google Scholar
Short, D.E., and Hill, R.E.. 1972. Adult emergence, ovarian development, and oviposition sequence of the western corn rootworm in Nebraska. J. econ. Ent. 65: 685689.CrossRefGoogle Scholar
Stamm, D.E., Mayo, Z.B., Campbell, J.B., Witkowski, J.F., Anderson, W., and Kozub, R.. 1985. Western corn rootworm (Coleoptera: Chrysomelidae) beetle counts as a means of making larval control recommendations in Nebraska. J. econ. Ent. 78: 794798.CrossRefGoogle Scholar