Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T10:49:53.689Z Has data issue: false hasContentIssue false

AN EVALUATION OF THREE TRAPS AND TWO LURES FOR THE AMBROSIA BEETLE TRYPODENDRON LINEATUM (OLIV.) (COLEOPTERA: SCOLYTIDAE) IN CANADA, NORWAY, AND WEST GERMANY

Published online by Cambridge University Press:  31 May 2012

J.A. McLean
Affiliation:
Faculty of Forestry, University of British Columbia, Vancouver, British Columbia, Canada V6T 1W5
A. Bakke
Affiliation:
Norwegian Forest Research Institute, N-1432 As – NLH, Norway
H. Niemeyer
Affiliation:
Nieders. Forestliche Versuchsanstalt, 34 Gottingen, West Germany

Abstract

Multiple funnel, Schlitzfalle, and drainpipe traps baited with Linoprax® or Biolure® semiochemical baiting systems for the ambrosia beetle Trypodendron lineatum (Oliv.) were evaluated in similar experiments in British Columbia, West Germany, and Norway. In British Columbia, the Biolure-baited traps caught more T. lineatum of both sexes than did Linoprax-baited traps. The Linoprax-baited traps caught more male T. lineatum in West Germany and Norway but fewer females than the Biolure system. Low percentages of female T. lineatum were often recorded at drainpipe traps.

Résumé

On a évalué trois types de pièges désignés entonnoirs multiples, "Schlitzfalle" et tuyaux de drainage, lorsqu’appâtés au Linoprax® ou aux systèmes sémiochimiques de Biolure® pour le scolyte Trypodendron lineatum (Oliv.); les tests ont été faits simultanément en Colombie-Britannique, en Allemagne de l’Ouest et en Norvège. En Colombie-Britannique, les pièges appâtés aux produits de Biolure ont capturé plus de T. lineatum des deux sexes que les pièges appâtés au Linoprax. Les pièges appâtés au Linoprax ont capturé plus de mâles de T. lineatum en Allemagne de l’Ouest et en Norvège, mais moins de femelles que les systèmes de Biolure. On a souvent observé des pourcentages faibles des femelles de T. lineatum dans les pièges tuyaux de drainage.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Annila, E., Bakke, A., Bejer-Petersen, B., and Lekander, B.. 1972. Flight period and brood emergence in Trypodendron lineatum (Oliv.) (Col.: Scolytidae) in the Nordic countries. Comm. Inst. For. Fenn. 76.4. 28 pp.Google Scholar
Bakke, A. 1983. Dosage response of the ambrosia beetle Trypodendron lineatum (Olivier) (Coleoptera: Scolytidae) to semiochemicals. Z. ang. Ent. 95: 158161.CrossRefGoogle Scholar
Bakke, A., and Saether, T.. 1978. Granbarkbillen kan fanges i rorfeller. Skogeieren 65(11): 10.Google Scholar
Borden, J.H., Handley, J.R., Johnston, B.D., MacConnell, J.G., Silverstein, R.M., Slessor, K.N., Swigar, A.A., and Wong, D.T.W.. 1979. Synthesis and field testing of 4,4,6-lineatin, the aggregation pheromone of Trypodendron lineatum (Oliv.) (Coleoptera: Scolytidae). J. Chem. Ecol. 6: 445456.Google Scholar
Borden, J.H., King, C.J., Lindgren, S., Chong, L., Gray, D.R., Oehlschlager, A.C., Slessor, K.N., and Pierce, H.D. Jr, 1982. Variation in response of Trypodendron lineatum from two continents to semiochemicals and trap form. Environ. Ent. 11: 403408.CrossRefGoogle Scholar
Browne, L.E. 1978. A trapping system for the western pine beetle using attractive pheromones. J. Chem. Ecol. 4: 261275.CrossRefGoogle Scholar
Chapman, J.A., and Kinghorn, J.M.. 1958. Studies of the flight and attack activity of the ambrosia beetle, Trypodendron lineatum (Oliv.), and other scolytids. Can. Ent. 90: 362372.CrossRefGoogle Scholar
Dyer, E.D.A., and Chapman, J.A.. 1965. Flight and attack of the ambrosia beetle, Trypodendron lineatum (Oliv.) in relation to felling date of logs. Can. Ent. 97: 4257.CrossRefGoogle Scholar
Fockler, C.E., and Borden, J.H.. 1972. Sexual behavior and seasonal mating activity of Trypodendron lineatum (Coleoptera: Scolytidae). Can. Ent. 104: 18411853.CrossRefGoogle Scholar
Jones, D. 1984. Use, misuse, and role of multiple-comparison procedures in ecological and agricultural entomology. Environ. Ent. 13: 635649.CrossRefGoogle Scholar
King, C.J., Oehlschlager, A.C., and Borden, J.H.. 1983. Response of Trypodendron lineatum (Olivier) to isomers of its aggregation pheromone, lineatin, in England. Z. ang. Ent. 95: 531533.CrossRefGoogle Scholar
Klimetzek, D. 1984. Grundlagen einer uberwachung und bekampfung der nutzholtzborkenkafer (Trypodendron spp.) mit lock- und ablenkstoffen. Freiburger Waldschutz-Abhandlungen Band 5. 227 pp.Google Scholar
Klimetzek, D., Vite, J.P., and Konig, E.. 1981. Uber das verhatten mitteleuropaischer Trypodendron – Arten gegenuber naturlichen und sythetischen Lockstoflen. Alleg. Forst u. Jagztg 152: 6470.Google Scholar
Lindgren, B.S. 1983. A multiple funnel trap for scolytid beetles (Coleoptera). Can. Ent. 115: 229302.CrossRefGoogle Scholar
Lindgren, B.S., and Borden, J.H.. 1983. Survey and mass trapping of ambrosia beetles (Coleoptera: Scolytidae) in timber processing areas on Vancouver Island. Can. J. For. Res. 13: 481493.CrossRefGoogle Scholar
MacConnell, J.G., Borden, J.H., Silverstein, R.M., and Stokkink, E.. 1977. Isolation and tentative identification of lineatin, a pheromone from the frass of Trypodendron lineatum (Coleoptera: Scolytidae). J. Chem. Ecol. 3: 549561.CrossRefGoogle Scholar
McLean, J.A. 1985. Ambrosia beetles: a multimillion dollar degrade problem of sawlogs in coastal British Columbia. For. Chron. 61: 295298.CrossRefGoogle Scholar
McLean, J.A., and Borden, J.H.. 1979. An operational pheromone-based suppression program for an ambrosia beetle, Gnathotrichus sulcatus, in a commercial sawmill. J. econ. Ent. 72: 165172.CrossRefGoogle Scholar
Moeck, H.A. 1970. Ethanol as the primary attractant for the ambrosia beetle Trypodendron lineatum (Coleoptera: Scolytidae). Can. Ent. 102: 985995.CrossRefGoogle Scholar
Niemeyer, H. 1983. Field responses of Ips typographus L. (Col: Scolytidae) to different trap structures and white versus black flight barriers. Z. ang. Ent. 99: 4445.CrossRefGoogle Scholar
Niemeyer, H. 1985. Test and effektivität von borkenkäferfallen. Der. Forst und Holzwirt 40: 3240.Google Scholar
Nijholt, W.W. 1979. The striped ambrosia beetle Trypodendron lineatum (Olivier). An annotated bibliography. Can. For. Serv., Rep. BC-X-121. 35 pp.Google Scholar
Nijholt, W.W., and Schonherr, J.. 1976. Chemical response behavior of scolytids in West Germany and western Canada. Can. For. Serv. Bi-mon. Res. Notes 32: 3132.Google Scholar
Paiva, M.R., Kiesel, K., and Vite, J.P.. 1983. Effect of lineatin concentration upon the catches and flight behavior of Trypodendron spp. (Coleoptera: Scolytidae). Z. ang. Ent. 95: 277284.CrossRefGoogle Scholar
Payne, T.L., Klimetzek, D., Kohnle, U., and Mori, K.. 1983. Electrophysiological and field responses of Trypodendron spp. to enantiomers of lineatin. Z. ang. Ent. 95: 272276.CrossRefGoogle Scholar
Shore, T.L., and McLean, J.A.. 1983. A further evaluation of the interactions between the pheromones and two host kairomones of the ambrosia beetles Trypodendron lineatum and Gnathotrichus sulcatus (Coleoptera: Scolytidae). Can. Ent. 115: 15.CrossRefGoogle Scholar
Vite, J.P., and Bakke, A.. 1979. Synergism between chemical and physical stimuli in host colonization by an ambrosia beetle. Naturwissenschaften 66: 528529.CrossRefGoogle Scholar