Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-07-07T15:23:45.020Z Has data issue: false hasContentIssue false

ALIMENTARY CANAL OF ADULT ACALYMMA VITTATA (COLEOPTERA: CHRYSOMELIDAE): MORPHOLOGY AND POTENTIAL ROLE IN SURVIVAL OF ERWINIA TRACHEIPHILA (ENTEROBACTERIACEAE)

Published online by Cambridge University Press:  31 May 2012

Carlos Garcia-Salazar
Affiliation:
Department of Entomology, Pennsylvania State University, University Park, Pennsylvania, USA 16802
F.E. Gildow
Affiliation:
Department of Plant Pathology, Pennsylvania State University, University Park, Pennsylvania, USA 16802
S.J. Fleischer*
Affiliation:
Department of Entomology, Pennsylvania State University, University Park, Pennsylvania, USA 16802
D. Cox-Foster
Affiliation:
Department of Entomology, Pennsylvania State University, University Park, Pennsylvania, USA 16802
F.L. Lukezic
Affiliation:
Department of Plant Pathology, Pennsylvania State University, University Park, Pennsylvania, USA 16802
*
1 Author to whom all corresponding should be addressed (E-mail: [email protected]).

Abstract

We describe the morphology of the alimentary canal in adult Acalymma vittata (F.), the vector of Erwinia tracheiphila (Smith) Bergey et al. emend. Hauben et al. (Enterobacteriaceae), the causal agent of bacterial wilt in cucurbits (Cucurbitaceae). The foregut includes a pre-oral cavity, pharynx, oesophagus, and crop but lacks a well-developed proventriculus. The midgut occupies approximately 65% of the length of the gut, has distinctive ventricular crypts throughout its length, and is lined with a peritrophic membrane, but lacks caeca for harboring symbionts. The hindgut comprises the colon and rectum and four Malpighian tubules. The cuticular intima of both foregut and hindgut bears rows of spines and is thrown into numerous folds. Transmission electron microscopy showed bacteria resembling E. tracheiphila within the hindgut 1 and 30 d after the beetles fed on E. tracheiphila spread between cotyledons of cucumber, Cucumis sativus L. (Cucurbitaceae). Our observations suggest that the midgut is not appropriate for long-term retention of E. tracheiphila because of the absence of caeca and the presence of a peritrophic membrane. Temporary and long-term pathogen retention may be associated with rows of spines and numerous folds within the foregut and hindgut.

Résumé

On trouvera ici la description de la morphologie du canal alimentaire de l’adulte d’Acalymma vittata (F.), le vecteur d’Erwinia tracheiphila (Smith) Bergey et al. emend Hauben et al. (Enterobacteriaceae), l’agent de la pourriture bactérienne des cucurbitacés (Curcubitaceae). L’intestin antérieur comporte une cavité pré-orale, le pharynx, l’oesophage et le gésier, mais il n’y a pas de proventricule bien développé L’intestin moyen occupe environ 65% de la longueur du tube digestif, comporte des cryptes ventriculaires distinctives sur toute sa longueur et est tapissé d’une membrane péritrophique; il n’y a cependant pas de caecums abritant des symbiontes. L’intestin postérieur est formé du colon, du rectum et de quatre tubules de Malpighi. La couche cuticulaire interne des intestins antérieur et postérieur porte des rangées d’épines et forme de nombreux replis. Le microscope électronique a démontré la présence de bactéries semblables à E. tracheiphila dans l’intestin postérieur des coléoptères 1 et 30 jours après leur consommation d’E. tracheiphila répandus entre les cotylédons du concombre, Cucumis sativus L. (Cucurbitaceae). Nos observations indiquent que l’intestin moyen n’est pas un bon site de préservation à long terme de la bactérie à cause de l’absence de caecums et de la présence d’une membrane péritrophique. La rétention temporaire ou à long terme du pathogène est peut-être associée aux multiples rangs d’épines et replis dans l’intestin antérieur et l’intestin moyen.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ameen, M., Rahman, M.F. 1973. Larval and adult digestive tracts of Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). International Journal of Insect Morphology and Embryology 2: 137–52CrossRefGoogle Scholar
Barbehenn, R.V., Martin, M.M. 1995. Peritrophic envelope permeability in herbivorous insects. Journal of Insect Physiology 41: 303–11CrossRefGoogle Scholar
Bassi, A. 1982. The overwintering nature of Erwinia tracheiphila (Smith) and resistance to bacterial wilt in cucumber. Ph.D. dissertation, University of Arkansas, Fayetteville, Ark.Google Scholar
Bess, H.A. 1935. The alimentary canal of Calasoma sycophanta Linnaeus. Ohio Journal of Sciences 35: 5461Google Scholar
Beyme, D., Ficke, W., Kleinhempel, H., Schafer, H.J., Bremer, R. 1975. Modellversuche zur Uberlebensdauer von Erwinia amylovora im verdauungstrakt der Honibbeine, im Honig und an teilen des Bienenstocks. Archiv fuer Phytopathologie und Pflanzenschutz 11: 203–11CrossRefGoogle Scholar
Binnington, K.C., Lehane, M.J., Beaton, C.D. 1998. The peritrophic membrane. pp. 747–58 in Harrison, F.W., Locke, M. (Eds.), Microscopic anatomy of invertebrates. Vol. 11B. New York: Wiley-LissGoogle Scholar
Blua, M.J., Gildow, F.E., Lukezic, F.L., Fleisher, S.J., de Mackiewicz, D. 1994. Characterization and detection of Erwinia tracheiphila isolates. Phytopathology Abstracts 84: 1370Google Scholar
Brandt, C.R., Adang, M.J., Spence, K.D. 1978. The peritrophic membrane: ultrastructural analysis and function as a mechanical barrier to microbial infection in Orgyia pseudotsugata. Journal of Invertebrate Pathology 32: 1224CrossRefGoogle Scholar
Brust, G.E. 1997. Interaction of Erwinia tracheiphila and muskmelon plants. Environmental Entomology 26: 849–54CrossRefGoogle Scholar
Carter, W. 1973. Insects in relation to plant diseases. 2nd ed. New York: John Wiley and SonsGoogle Scholar
Chapman, R.F. 1998. The insects: structure and function. 4th ed. New York: ElsevierCrossRefGoogle Scholar
Costerton, J.W., Irvin, R.T., Cheng, K.J. 1981. The bacteria glycocalyx in nature and disease. Annual Review of Microbiology 35: 299334CrossRefGoogle ScholarPubMed
de Mackiewicz, D., Gildow, F.E., Blua, M., Fleischer, S.J., Lukeizic, F.L. 1998. Herbaceous weeds are not ecologically important reservoirs for Erwinia tracheiphila. Plant Disease 82: 17CrossRefGoogle Scholar
Dillon, R.J., Charnley, A.K. 1995. Chemical barriers to gut infection in the desert locust: in vitro production of antimicrobial phenols associated with the bacterium Pantoea agglomerans. Journal of Invertebrate Pathology 66: 72–5CrossRefGoogle Scholar
Dillon, R.J., Charnley, A.K. 1996. Colonization of the guts of germ-free desert locust, Schistocerca gregaria, by the bacterium Pantoea agglomerans. Journal of Invertebrate Pathology 67: 1114CrossRefGoogle Scholar
Ellers-Kirk, C. 1996. Population dynamics of Acalymma vittata (Fab.) (Coleoptera: Chrysomelidae) and incorporation of entomopathogenic nematodes for integrated pest management of diabroticites in fresh-market cucurbits. M.S. thesis, The Pennsylvania State University, University Park, Pa.Google Scholar
Elliott, C., Poos, F.W. 1934. Overwintering of Aplanobacter stewartii. Science (Washington, D.C.) 80: 289–90CrossRefGoogle Scholar
Fleischer, S.J., de Mackiewicz, D., Gildow, F.E., Lukezic, F.L. 1999. Serological estimates of the seasonal dynamics of Erwinia tracheiphila in Acalymma vittata (Coleoptera: Chrysomelidae). Environmental Entomology 28: 470–6CrossRefGoogle Scholar
Gupta, A.P. 1965. The digestive and reproductive systems of the Meloidea (Coleoptera) and their significance in the classification of the family. Annals of the Entomological Society of America 58: 442–8CrossRefGoogle Scholar
Harwood, R.F., James, M.T. 1979. Entomology in human and animal health. New York: Macmillan Publishing Co., Inc.Google Scholar
Howard, R.J., Garland, J.A., Seaman, W.L. 1994. Diseases and pests of vegetable crops in Canada. Ottawa: Entomological Society of CanadaGoogle Scholar
Humphrey, W.J., Spurlock, B.O., Johnson, J.S. 1978. Critical point drying of cryo-fractured specimens. in Hayat, M.A. (Ed.), Principles and techniques of scanning electron microscopy. Vol. 6. New York: Van Nostrand Reinhold Co.Google Scholar
Leach, J.G. 1940. Insect transmission of plant diseases. New York: McGraw-HillGoogle Scholar
Leach, J.G. 1964. Observations on cucumber beetles as vectors of Cucurbit Wilt. Phytopathology 54: 606–7Google Scholar
Lehane, M.J. 1998 a. The foregut. pp. 713–24 in Harrison, F.W., Locke, M. (Eds.), Microscopic anatomy of invertebrates. Vol. 11B. New York: Wiley-LissGoogle Scholar
Lehane, M.J. 1998 b. The midgut. pp. 725–46. in Harrison, F.W., Locke, M. (Eds.), Microscopic anatomy of invertebrates. Vol. 11B. New York: Wiley-LissGoogle Scholar
Lukezic, F.L., Sackett, W.M., Fleischer, S.J., Orzolek, M.D., Gildow, F.E. 1996. Influence of concentration of Erwinia tracheiphila cells on the development of wilt symptoms in field-grown cucumbers and cantaloupe plants. Phytopathology Abstracts 86: S123Google Scholar
Nardon, P., Grenier, A.M. 1989. Endocytobiosis in Coleoptera: biological, biochemical, and genetic aspects. in Schwemmler, W., Gassner, G. (Eds.), Insect endocytobiosis: morphology, physiology, genetics, evolution. Boca Raton: CRC PressGoogle Scholar
Poos, F.W. 1955. Studies of certain species of Chaetocnema. Journal of Economic Entomology 48: 555–63CrossRefGoogle Scholar
Rand, F.V. 1915. Dissemination of bacterial wilt of cucurbits. Journal of Agricultural Research 5: 257–60Google Scholar
Rand, F.V., Cash, L.C. 1920. Some insect relations of Bacillus tracheiphilus Erw. Sm. Phytopathology 10: 133–40Google Scholar
Rand, F.V., Enlows, E.M.A. 1916. Transmission and control of bacterial wilt of cucurbits. Journal of Agricultural Research 6: 417–34Google Scholar
Schalk, J.M., Peterson, J.K., Hamalle, R.J. 1987. The abdominal flora of the banded cucumber beetle (Diabrotica belteata LeConte). Journal of Agricultural Entomology 4: 333–6Google Scholar
Sherf, A.F., MacNab, A.A. 1986. Vegetable diseases and their control. New York: John Wiley & SonsGoogle Scholar
Shukla, G.S., Verma, O.P. 1971. Malpighian tubules of Odiporus longicollis (Olivier) (Coleoptera: Curculionidae). International Journal of Insect Morphology and Embryology 1: 99101CrossRefGoogle Scholar
Sinha, R.N. 1958. Similarities in the histology of the gut of some species of Tribolium macleay (Coleoptera, Tenebrionidae) and Oryzaephilus ganglbauer (Col., Cucujidae). The Canadian Entomologist 90: 129–45CrossRefGoogle Scholar
Snodgrass, R.E. 1935. Principles of insect morphology. New York: McGraw-Hill Book Company, Inc.Google Scholar
Talbot, M. 1928. The structure of the digestive system of Creophilus villosis. Ohio Journal of Sciences 28: 261–5Google Scholar
Walters, L.L., Irons, K.P., Guzman, H., Tesh, R.B. 1993. Formation and composition of the peritrophic membrane in the sand fly, Phlebotomus perniciosus (Diptera: Psychodidae). Journal of Medical Entomology 30: 179–98CrossRefGoogle ScholarPubMed
Walters, L.L., Irons, K.P., Guzman, H., Tesh, R.B. 1995. Peritrophic envelopes of Lutzomyia spinicrassa (Diptera: Psychodidae). Journal of Medical Entomology 32: 711–25CrossRefGoogle ScholarPubMed
Yao, C., Zehnder, G., Bauske, E., Kloepper, J. 1996. Relationship between cucumber beetle (Coleoptera: Chrysomelidae) density and incidence of bacterial wilt of cucurbits. Journal of Economic Entomology 89: 510–14CrossRefGoogle Scholar