Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T10:59:18.765Z Has data issue: false hasContentIssue false

ACCUMULATION OF MONOTERPENES AND ASSOCIATED VOLATILES FOLLOWING INOCULATION OF GRAND FIR WITH A FUNGUS TRANSMITTED BY THE FIR ENGRAVER, SCOLYTUS VENTRALIS (COLEOPTERA: SCOLYTIDAE)1

Published online by Cambridge University Press:  31 May 2012

Kenneth F. Raffa
Affiliation:
Department of Entomology, Washington State University, Pullman, Washington99164
Alan A. Berryman
Affiliation:
Department of Entomology, Washington State University, Pullman, Washington99164

Abstract

The accumulation of monoterpenes during the defensive response by grand fir was quantified over a 28-day period. Monoterpene content increased exponentially with time and varied greatly among trees. Following analysis, sampled trees were observed for 4 years. Those trees which showed an extensive accumulation of monoterpenes in response to artificial inoculation with fungi transmitted by the fir engraver were less likely to be killed during this period than trees which exhibited low levels of secondary monoterpene accumulation. The extent of the defensive response was influenced by host age, disease, crown class, and artificial stress. Following inoculation with fungi transmitted by the fir engraver, the proportions of limonene, myrcene, and Δ-3-carene, present in the monoterpene fraction increased. In previously reported laboratory bioassays, each of these compounds has demonstrated higher toxic or repellent properties, or both, than have the other monoterpenes present in grand fir. Mechanical injury resulted in less pronounced reactions than did fungal inoculation. Necrotic lesion formation is accompanied by an increased concentration of short-chain hydrocarbons, followed by a decline to normal levels. Necrotic lesion formation and monoterpene synthesis represent at least two independent activities during the wound response.

Résumé

L'accumulation de monoterpenes lors de la réaction défensive du sapin Abies grandis a été quantifiée pour une période de 28 jours. La teneur en monoterpene a augmenté exponentiellement avec le temps, tout en montrant une grande variabilité entre arbres. Suite à l'analyse, les arbres échantillonnés ont été observés pendant 4 ans. Les arbres qui ont montré une accumulation importante de. monoterpènes en réponse a l'inoculation artificielle de fongi transmis par un scolyte, ont subi une mortalité plus élevée durant cette période que les arbres ayant montré des niveaux faibles d'accumulation secondaire de monoterpenes. L'intensité de la réaction défensive chez l'hôte a été influencée par l'âge, la maladie, la classe de couronne et le stress artificiel. Suite à l'inoculation de fongi transmis par le scolyte, les proportions de limonène, myrcène, et Δ-3-carène présents dans la fraction monoterpénique ont augmenté. Lors d'essais de laboratoire rapportés antérieurement, ces substances se sont avérées plus toxiques et/ou répulsives, que les autres monoterpenes présents chez A. grandis. Des blessures mécaniques ont provoqué des réactions moins prononcées que l'inoculation fongique. La formation d'une lésion nécrotique s'accompagne d'une augmentation des hydrocarbonees à courte chaîne, suivie d'un retour au niveau normal. La formation d'une lésion nécrotique et la synthèse de monoterpenes sont deux activités pour le moins indépendantes au cours de la réaction à la blessure.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amman, G. D. 1972. Mountain pine beetle brood production in relation to thickness of lodgepole pine phloem. J. econ. Ent. 65: 138140.CrossRefGoogle Scholar
Amman, G. D. and Pace, V. E.. 1976. Optimum egg gallery densities for the mountain pine beetle in relation to lodgepole pine phloem thickness. U.S. Dept. Agric. For. Serv. Res. Note INT-209. 8 pp.Google Scholar
Bannan, M. W. 1936. Vertical resin ducts in the secondary wood of the Abietinaceae. New Phytol. 35: 1147.CrossRefGoogle Scholar
Beckman, R. D. and Libers, R.. 1968. Gas chromatographic method for analyzing C1–C5 hydrocarbons. J. Gas Chromat. 6: 188190.Google Scholar
Berryman, A. A. 1969. Response of Abies grandis to attack by Scolytus ventralis (Coleoptera: Scolytidae). Can. Ent. 101: 10331041.CrossRefGoogle Scholar
Berryman, A. A. 1972. Resistance of conifers to invasion by bark beetle-fungus associations. BioScience 22: 598602.CrossRefGoogle Scholar
Berryman, A. A. 1974. Dynamics of bark beetle populations: towards a general productivity model. Environ. Ent. 4: 579585.CrossRefGoogle Scholar
Berryman, A. A. 1976. Theoretical explanation of mountain pine beetle dynamics in lodgepole pine forests. Environ. Ent. 5: 12251233.CrossRefGoogle Scholar
Berryman, A. A. and Ashraf, M.. 1970. Effects of Abies grandis resin on the attack behavior and brood survival of Scolytus ventralis (Coleoptera: Scolytidae). Can. Ent. 102: 12291236.CrossRefGoogle Scholar
Berryman, A. A. and Pienaar, L. V.. 1973. Simulation of intraspecific competition and survival of Scolytus ventralis broods (Coleoptera: Scolytidae). Environ. Ent. 2: 447459.CrossRefGoogle Scholar
Bordasch, R. P. and Berryman, A. A.. 1977. Host resistance to the fir engraver beetle Scolytus ventralis (Coleoptera: Scolytidae). 2. Repellency of Abies grandis resins and some monoterpenes. Can. Ent. 109: 95100.CrossRefGoogle Scholar
Callaham, R. Z. 1955. Oleoresin production in the resistance of ponderosa pine to bark beetles. Ph.D. Dissert., University of Calif. (Berkeley), 120 pp.Google Scholar
as cited in Smith, R. H., 1966. Resin quality as a factor in resistance of pines to bark beetles. pp. 189–196 in Gerhold, H. D., McDermott, R. E., Shreiner, E. J., and Winieski, J. A. (Eds.), Breeding Pest-Resistant Trees. Proc. NATO and NSF Symposium. Pergamon Press, Oxford. 505 pp.Google Scholar
Churchwell, R. L. 1964. Analysis of C1–C8 hydrocarbons. J. Gas Chromat. 2: 275276.CrossRefGoogle Scholar
Cooper, W. C. 1972. Trauma-induced ethylene production by citrus flowers, fruit, and wood. pp. 543548in Carr, D. J. (Ed.), Plant Growth Substances. Springer-Verlag, Berlin.Google Scholar
Coyne, J. F. and Lott, L. H.. 1976. Toxicity of substances in pine oleoresin to southern pine beetles. J. Georgia ent. Soc. 11: 301305.Google Scholar
Daubenmire, R. and Daubenmire, J. B.. 1968. Forest vegetation of eastern Washington and northern Idaho. Wash. St. Univ. Tech. Bull. 60. 104 pp.Google Scholar
Hanover, J. M. and Furniss, M. M.. 1966. Monoterpene concentration in Douglas-fir in relation to geographic location and resistance to attack by the Douglas-fir beetle. U.S. Dep. Agric. For. Serv. Res. Pap. NC-6: 2328.Google Scholar
Hislop, E., Hoad, G. V., and Archer, S. A.. 1973. The involvement of ethylene in plant diseases. pp. 87117in Byrde, R. J. and Cutting, C. V. (Eds.), Fungal Pathogenicity and the Plant's Response. Academic Press, New York.CrossRefGoogle Scholar
Hodges, J. D., Elam, W. W., Watson, W. F., and Nebeker, T. E.. 1979. Oleoresin characteristics and susceptibility of four southern pines to southern pine beetle (Coleoptera: Scolytidae) attacks. Can. Ent. 111: 889896.CrossRefGoogle Scholar
Hodges, J. D. and Lorio, P. L. Jr., 1975. Moisture stress and composition of xylem oleoresin in loblolly pine. Forest Sci. 21: 283290.Google Scholar
Jordan, J. H., Broussard, N. M., and Holthy, W. R.. 1971. Analysis of ethylene unit pyrolysis furnace effluent gases by gas chromatography. J. Chromat. Sci. 9: 383384.CrossRefGoogle Scholar
Livingston, R. L. 1971. Aspects of the relationship between the fir engraver, Scolytus ventralis (Coleoptera:Scolytidae) and certain associated fungi. Ph.D. Dissert., Washington State University.Google Scholar
Lougheed, E. C., Franklin, E. W., and Smith, R. B.. 1969. Ethylene analyses by automatic gas chromatography. Can. J. Pl. Sci. 49: 386391.CrossRefGoogle Scholar
Mahoney, R. L. 1978. Lodgepole pine/mountain pine beetle risk classification methods and their application. pp. 106113in Berryman, A. A., Amman, G. D., Stark, R. W., and Kibbee, D. L. (Eds.) Theory and Practice of Mountain Pine Beetle Management in Lodgepole Pine Forests. College or Forest Resources, University of Idaho, Moscow.Google Scholar
Mason, R. R. 1966. Dynamics of Ips populations after summer thinning in a loblolly pine plantation with special reference to host tree resistance. Ph.D. Dissert., University of Michigan.Google Scholar
Mindrup, R. 1978. The analysis of gases and light hydrocarbons by gas chromatography. J. Chromat. Sci. 16: 380389.CrossRefGoogle Scholar
Raffa, K. F. 1981. The role of host resistance in the colonization behavior, ecology, and evolution of bark beetles. (Coleoptera: Scolytidae). Ph.D. Dissert., Washington State University, Pullman.Google Scholar
Raffa, K. F. and Berryman, A. A.. 1982 a. Physiological differences between lodgepole pines resistant and susceptible to the mountain pine beetle and associated micro-organisms. Environ. Ent. 11: 486492.CrossRefGoogle Scholar
Raffa, K. F. and Berryman, A. A.. 1982 b. Gustatory cues in the orientation of Dendroctonus ponderosae (Coleoptera: Scolytidae) to host trees. Can. Ent. 114: 7104.CrossRefGoogle Scholar
Reid, R. W., Whitney, H. S., and Watson, J. A.. 1967. Reactions of lodgepole pine to attack by Dendroctonus ponderosae Hopkins and blue stain fungi. Can. J. Bot. 45: 11151116.CrossRefGoogle Scholar
Richmond, A. B. 1969. Liquid phase for gas chromatographic separation of lower hydrocarbons. J. Chromat. Sci. 7: 321322.CrossRefGoogle Scholar
Rudinsky, J. A. 1962. Ecology of Scolytidae. A. Rev. Ent. 7: 327348.CrossRefGoogle Scholar
Russell, C. E. and Berryman, A. A.. 1976. Host resistance to the fir engraver beetle. 1. Monoterpene composition of Abies grandis pitch blisters and fungus-infected wounds. Can. J. Bot. 54: 1418.CrossRefGoogle Scholar
Safranyik, L., Shrimpton, D. M., and Whitney, H. S.. 1975. An interpretation of the interaction between lodgepole pine, the mountain pine beetle and its associated blue stain fungi in western Canada. pp. 406–428 in Baumgartner, D. M. (Ed.), Management of Lodgepole Pine Ecosystems. Wash. St. Univ. Co-op. Ext. Serv. 825 pp.Google Scholar
Saha, N. C., Jain, S. K., and Dua, R. K.. 1978. A generalized and easily adaptable gas chromatographic method for the analysis of gaseous hydrocarbons. J. chromat. Sci. 16: 323328.CrossRefGoogle Scholar
Schenk, J. A., Moore, J. A., Adams, D. L., and Mahoney, R. L.. 1977. A preliminary hazard rating of grand fir stands for mortality by the fir engraver. Forest Sci. 23: 103110.Google Scholar
Shain, L. and Hillis, W. E.. 1972. Ethylene production in Pinus radiata in response to Sirex amylostereum attack. Phytopathology 62: 14071409.CrossRefGoogle Scholar
Shrimpton, D. M. 1973. Extractives associated with the wound response of lodgepole pine attacked by the mountain pine beetle and associated micro-organisms. Can. J. Bot. 51: 527534.CrossRefGoogle Scholar
Shrimpton, D. M. 1978. Resistance of lodgepole pine to mountain pine beetle infestation. pp. 6476in Berryman, A. A., Amman, G. D., Stark, R. W., and Kibbee, D. L. (Eds.), Theory and Practice of Mountain Pine Beetle Management in Lodgepole Pine Forests. College of Forest Resources, University of Idaho, Moscow.Google Scholar
Shrimpton, D. M. and Watson, J. A.. 1971. Response of lodgepole pine seedlings to inoculation with Europhium clavigerum, a blue stain fungus. Can. J. Bot. 49: 373375.CrossRefGoogle Scholar
Smith, R. H. 1965. Effect of monoterpene vapors on the western pine beetle. J. econ. Ent. 58: 509510.CrossRefGoogle Scholar
Smith, R. H. 1966. The monoterpene composition of Pinus ponderosa xylem resin and of Dendroctonus brevicomis pitch tubes. Forest Sci. 12: 6368.Google Scholar
Smith, R. H. 1975. Formula for describing effect of insect and host tree factors on resistance to western pine beetle attack. J. econ. Ent. 58: 841844.CrossRefGoogle Scholar
Struble, G. R. 1957. The fir engraver, a serious enemy of western true firs. U.S. Dep. Agric. Prod. Res. Rep. 11. 18 pp.Google Scholar
Sturgeon, K. B. 1979. Monoterpene variation in ponderosa pine xylem resin related to western pine beetle predation. Evolution 33: 803814.CrossRefGoogle ScholarPubMed
Thalenhorst, W. 1958. Grundzüge der populationsdynamik des grössen Ficthen-borkenkafers Ips typographus L. Shriftenreihe der Forstlichen Fakültat der Universitat Göttingen, No. 21. 126 pp.Google Scholar
Vité, J. P. and Wood, D. L.. 1961. A study on the applicability of the measurement of oleoresin exudation pressure in determining susceptibility of second-growth ponderosa pine to bark beetle infestation. Contr. Boyce Thompson Inst. Pl. Res. 21: 6778.Google Scholar
Wong, B. L. and Berryman, A. A.. 1977. Host resistance to the fir engraver beetle. 3. Lesion development and containment of infection by resistant Abies grandis inoculated with Trichosporium symbioticum. Can. J. Bot. 55: 23582365.CrossRefGoogle Scholar
Wright, E. 1933. A cork-borer method for inoculating trees. Phytopathology 23: 487488.Google Scholar
Wright, L. C., Berryman, A. A., and Gurusiddaiah, S.. 1979. Host resistance to the fir engraver beetle, Scolytus ventralis (Coleoptera: Scolytidae). 4. Effect of defoliation on wound monoterpene and inner bark carbohydrate concentrations. Can. Ent. 111: 12551262.CrossRefGoogle Scholar
Yang, S. F. and Pratt, H. K.. 1978. The physiology of ethylene in wounded plant tissues. pp. 595–622 in Kahl, G. (Ed.), Biochemistry of Wounded Plant Tissues. de Gruyter, New York. 680 pp.Google Scholar
Zimmerman, P. W. and Wilcoxon, F.. 1935. Several growth substances which cause initiation of roots and other responses in plants. Contr. Boyce Thompson Inst. Pl. Res. 7: 202229.Google Scholar