Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-05T13:16:11.415Z Has data issue: false hasContentIssue false

WITHIN-TREE DYNAMICS OF MASS ATTACK BY DENDROCTONUS PSEUDOTSUGAE (COLEOPTERA: SCOLYTIDAE) ON ITS HOST

Published online by Cambridge University Press:  31 May 2012

Björn G. Prenzel
Affiliation:
Department of Chemistry, University of Calgary, 2500 University Drive, Calgary, Alberta, Canada T2N 1N4
William G. Laidlaw
Affiliation:
Department of Chemistry, University of Calgary, 2500 University Drive, Calgary, Alberta, Canada T2N 1N4
Hal Wieser*
Affiliation:
Department of Chemistry, University of Calgary, 2500 University Drive, Calgary, Alberta, Canada T2N 1N4
*
1Author to whom all correspondence should be addressed (E-mail: [email protected]).

Abstract

The within-tree scale dynamics of mass attack by the Douglas-fir beetle, Dendroctonus pseudotsugae Hopkins, on its host were investigated and quantified. Seven similarly sized Douglas-fir, Pseudotsuga menziesii (Mirb.) Franco (Pinaceae), infested as part of several pheromone-induced infestations, were monitored over an entire attack season. Ninety percent of the attacks on mass-attacked trees occurred within 3 weeks of colonization; the remaining 10% occurred gradually over the remaining 7 weeks of the attack season. Vertical attack distribution followed a Gaussian form that shifted upwards on the bole with increasing attack density. The change in attack pattern associated with increasing attack density was investigated for the central vertical portion of the bole, where most attacks occurred, and where the vertical pattern was least variable. At low density, attacks were randomly distributed. As density increased, the distance between attacks decreased, eventually resulting in a uniform distribution.

Résumé

La dynamique d’une invasion massive de Dendroctones du Douglas, Dendroctonus pseudotsugae Hopkins, a été étudiée et quantifiée à l’échelle de l’arbre. Sept sapins de Douglas, Pseudotsuga menziesii (Mirb) Franco (Pinaceae), envahis dans le cadre d’une étude des infestations provoquées par plusieurs phéromones, ont été suivis pendant toute une saison d’infestation. Quatre-vingt-dix pour-cent des invasions massives se sont produites moins de 3 semaines après la colonisation; les derniers 10% se sont produits graduellement au cours des 7 dernières semaines de la saison des invasions. La répartition verticale des infestations suivait une distribution normale se déplaçant vers le haut sur le tronc à mesure que la densité augmentait. Ce changement en fonction de l’augmentation de densité a été examiné dans la portion centrale verticale du tronc, où se sont produites la plupart des invasions et où la répartition verticale était le plus stable. A densité faible, les attaques se faisaient selon une tendance aléatoire. À mesure que la densité augmentait, la distance entre les points d’infestation diminuait et la répartition des insectes devenait éventuellement uniforme.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atkins, M.D. 1966. Behavioural variation among scolytids in relation to their habitat. The Canadian Entomologist 101: 164–65CrossRefGoogle Scholar
Bradbury, J., Vehrencamp, S. 1993. Antelope program ver. 1.3 (Mac). Biology Department, University of California at San Diego, La JollaGoogle Scholar
Byers, J.A. 1984. Nearest neighbor analysis and simulation of distribution patterns indicates an attack spacing mechanism in the bark beetle, Ips typographus (Coleoptera: Scolytidae). Environmental Entomology 13: 11911200CrossRefGoogle Scholar
Byers, J.A. 1989. Behavioural mechanisms involved in reducing competition in bark beetles. Holartic Ecology 12: 466–76Google Scholar
Byers, J.A. 1992 a. Grid cell contour mapping of point densities: bark beetle attacks, fallen pine shoots, and infested tree. Oikos 63: 233–43CrossRefGoogle Scholar
Byers, J.A. 1992 b. Dirichlet tessellation of bark beetle spatial attack points. Journal of Animal Ecology 61: 759–68CrossRefGoogle Scholar
Clark, P.J., Evans, F.C. 1954. Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology 35: 445–53CrossRefGoogle Scholar
Furniss, M.M. 1962. Infestation patterns of Douglas-fir beetle in standing and windthrown trees in southern Idaho. Journal of Economic Entomology 55: 486–91CrossRefGoogle Scholar
Graham, K. 1959. Release by flight exercise of the chemotropic response from photopositive domination in a scolytid beetle. Nature (London) 184: 282–84CrossRefGoogle Scholar
Hedden, R.L., Gara, R.I. 1976. Spatial attack pattern of a Western Washington Douglas-fir beetle population. Forest Science 22: 100102Google Scholar
Humphreys, N. 1995. Douglas-fir in British Columbia. Canadian Forest Service Forest Pest Leaflet Fo 29–6/14–1995EGoogle Scholar
Libbey, L.M., Oehlschlager, A.C., Ryker, L.C. 1983. 1-Methylcyclohex-2-en-1-ol as an aggregation pheromone of Dendroctonus pseudotsugae. Journal of Chemical Ecology 9: 1533–41CrossRefGoogle Scholar
Lindgren, B.S. 1983. A multiple funnel trap for scolytid beetles (Coleoptera). The Canadian Entomologist 115: 299302CrossRefGoogle Scholar
McMullen, L.H., Atkins, M.D. 1962. On the flight and host selection of the Douglas-fir beetle, Dendroctonus pseudotsugae Hopk. (Coleoptera: Scolytidae). The Canadian Entomologist 94: 1309–25CrossRefGoogle Scholar
Miller, J.M., Keen, F.P. 1960. Biology and control of the Western Pine Beetle. U.S. Department of Agriculture Forest Service Miscellaneous Publications 800Google Scholar
Pitman, G.B., Vité, J.P. 1970. Field response of Dendroctonus pseudotsugae (Coleoptera: Scolytidae) to synthetic frontalin. Annals of the Entomological Society of America 63: 661–64CrossRefGoogle Scholar
Raffa, K.F., Phillips, T.W., Salomm, S.M. 1993. Strategies and mechanisms of host colonization by bark beetles. pp. 103–28 in Schowalter, T.D., Filip, G.M. (Eds), Beetle–pathogen interactions in conifer forests. San Diego: Academic Press Inc.Google Scholar
Rudinsky, J.A., Michael, R.R. 1973. Sound production in Scolytidae: stridulation by female Dendroctonus beetles. Journal of Insect Physiology 19: 689705CrossRefGoogle Scholar
Rudinsky, J.A., Ryker, L.C. 1977. Olfactory and auditory signals mediating behavioral patterns of bark beetles. Colloques Internationaux du Centre National de la Recherche Scientifique 265: 195207Google Scholar
Safranyik, L., Vithayasai, C. 1971. Some characteristics of the spatial arrangement of attacks by the mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Scolytidae), on lodgepole pine. The Canadian Entomologist 103: 1607–25CrossRefGoogle Scholar
Safranyik, L., Silversides, R., McMullen, L.H., Linton, D.A. 1989. An empirical approach to modeling the local dispersal of the mountain pine beetle, Dendroctonus ponderosae Hopk. (Coleoptera: Scolytidae) in relation to sources of attraction, wind direction and speed. Journal of Applied Entomology 108: 498511CrossRefGoogle Scholar
Safranyik, L., Linton, D.A., Silversides, R., McMullen, L.H. 1992. Dispersal of released mountain pine beetles under the canopy of a mature lodgepole pine stand. Journal of Applied Entomology 113: 441–50CrossRefGoogle Scholar
Sall, J., Lehman, A. 1996. A Guide to Statistical and Data Analysis Using JMP and JMPIN. Belmont: Software, Wadsworth Publ. Co.Google Scholar
SAS Institute Inc. 1997. JMPIN Version 3.2.1. Cary: SAS Institute Inc.Google Scholar
Wieser, H., Dixon, E.A. 1994. Douglas-fir beetle pheromone applications. B.C. Ministry of Forests Invermere Forest District Report FH94DIN–001Google Scholar
Synergy Software. 1993. Kaleidagraph Reference Guide: curve fitting, section 11.2.3. 3rd ed. Reading: Synergy SoftwareGoogle Scholar
Synergy Software. 1997. Kaleidagraph Version 5.08d. Reading: Synergy SoftwareGoogle Scholar