Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-04T23:55:25.351Z Has data issue: false hasContentIssue false

Was species diversification in Tenthredinoidea (Hymenoptera: Symphyta) related to the origin and diversification of angiosperms?

Published online by Cambridge University Press:  28 October 2014

Y. Isaka*
Affiliation:
Department of Mountain and Environmental Sciences, Interdisciplinary Graduate School of Science and Technology, Shinshu University, Matsumoto, Nagano 390-8621, Japan
T. Sato
Affiliation:
Department of Biology, Faculty of Science, Shinshu University, Matsumoto, Nagano 390-8621, Japan
*
1Corresponding author (e-mail: [email protected]).

Abstract

The paraphyletic grouping “Symphyta” (8353 described species) represents the basal lineages of the insect order Hymenoptera. The most species-rich superfamily in Symphyta is Tenthredinoidea (7390 species), with six extant families. Most of tenthredinoids species are phytophagous at the larval stage, and the species using angiosperms as a host are more numerous (6265 species) than those using gymnosperms (140 species) or pteridophytes (985 species). In this study, we investigated whether diversification of Tenthredinoidea could be attributed to their use of angiosperms as hosts by examining host plant usage by lineage. We performed molecular phylogenetic and divergence time estimation analyses using molecular data (~2 kilobase sequence in five DNA regions) and conducted a diversification analysis. Our results suggest that Tenthredinoidea (excluding Blasticotomidae) had used angiosperms since its origin; the phylogeny of Tenthredinoidea showed a significant shift in diversification at two nodes, and those nodes overlap with the periods of origin and diversification of angiosperms.

Type
Biodiversity & Evolution
Copyright
© Entomological Society of Canada 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Subject editor: Michael Sharkey

References

Badenes-Perez, F.R. and Johnson, M.T. 2007. Ecology, host specificity and impact of Atomacera petroa Smith (Hymenoptera: Argidae) on Miconia calvescens DC (Melastomataceae). Biological Control, 43: 95101.Google Scholar
Bell, C.D., Soltis, D.E., and Soltis, P.A. 2010. The age and diversification of the angiosperms re-revisited. American Journal of Botany, 97: 12961303.Google Scholar
Benson, R.B. 1963. The affinities of the Australian Argidae (Hymenoptera). Annals and Magazine of Natural History, Series 13, 58: 631635.Google Scholar
Blank, S.M., Groll, E.K., Liston, A.D., Prous, M., and Taeger, A. 2012. ECatSym – Electronic World Catalog of Symphyta (Insecta, Hymenoptera). Program version 4.0 beta, data version 39 (18.12.2012) [online]. Digital Entomological Information, Müncheberg, Germany. Available from http://sdei.senckenberg.de/ecatsym/ [accessed 23 November 2013].Google Scholar
Boevé, J.L, Blank, S.M., Meijer, G., and Nyman, T. 2013. Invertebrate and avian predators as drivers of chemical defensive strategies in tenthredinid sawfly. BMC Evolutionary Biology, 13: 198. doi:10.1186/1471-2148-13-198.Google Scholar
Christopher, J.E. 2013. The gymnosperm database [online]. Available from http://www.conifers.org/zz/gymnosperms.php [accessed 20 April 2013].Google Scholar
Clarke, J.T., Warnock, R., and Donoghue, P.C. 2011. Establishing a time-scale for plant evolution. New Phytologist, 192: 266301.Google Scholar
Costa, J.T. and Louque, R.W. 2001. Group foraging and trail following behavior of the red-headed pine Sawfly Neodiprion lecontei (Fitch) (Hymenoptera: Symphyta: Diprionidae). Annals of Entomological Society of America, 94: 480489.Google Scholar
Crane, P.R., Friis, E.M., and Pedersen, K.R. 1994. The origin and early diversification of angiosperms. Nature, 374: 2733.Google Scholar
Davies, T.J., Barraclough, T.G., Chase, M.W., Soltis, P.S., Soltis, D.E., and Savolainen, V. 2004. Darwin’s abominable mystery: insights from a supertree of the angiosperms. Proceedings of the National Academy of Sciences, 101: 19041909.Google Scholar
Davis, R.B., Baldauf, S.L., and Maythew, P.J. 2009. Eusociality and the success of the termites: insights from a supertree of dictyopteran families. Journal of Evolutionary Biology, 22: 17501761.Google Scholar
Davis, R.B., Baldauf, S.L., and Maythew, P.J. 2010. The origins of species richness in the Hymenoptera: insights from a family-level supertree. BMC Evolutionary Biology, 10: 109. doi:10.1186/1471-2148-10-109.Google Scholar
Drummond, A.J., Ho, S.Y.W., Philips, M.J., and Rambaut, A. 2006. Relaxed phylogenetics and dating with confidence. Public Library of Science Biology, 4: e88. doi:10.1371/journal.pbio.0040088.Google Scholar
Drummond, A.J. and Rambaut, A. 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology, 7: 214.Google Scholar
Farrell, B.D. 1998. “Inordinate fondness” explained: why are there so many beetles? Science, 281: 555558.Google Scholar
Farris, J.S. 1976. Expected asymmetry of phylogenetic trees. Systematic Biology, 25: 196198.Google Scholar
Friss, E.M., Pedersen, K.R, and Crane, P.R. 2006. Cretaceous angiosperm flowers: innovation and evolution in plant reproduction. Palaeogeography, Palaeoclimatology, Palaeoecology, 232: 251293.CrossRefGoogle Scholar
Futuyma, D.J. and Agrawal, A.A. 2009. Macroevolution and the biological diversity of plants and herbivores. Proceedings of the National Academy of Sciences, 106: 1805418061.CrossRefGoogle ScholarPubMed
Gernhard, T. 2008. The conditioned reconstructed process. Journal of Theoretical Biology, 253: 769778.Google Scholar
Goulet, H. and Huber, J.T. 1993. Hymenoptera of the world: an identification guide to families. Canada Communication Group, Ottawa, Ontario, Canada.Google Scholar
Grimaldi, D. and Engel, M.S. 2005. Evolution of the insects. Cambridge University Press, New York, New York, United States of America.Google Scholar
Heraty, J., Ronquist, F., Carpenter, J.M., Hawks, D., Schulmeister, S., Dowling, A.P., et al. 2011. Evolution of the hymenopteran megaradiation. Molecular Phylogenetics and Evolution, 60: 7388. doi:10.1016/j.ympev.2011.04.003.Google Scholar
Hunt, T., Bergsten, J., Levkanicova, Z., Papadopoulou, A., St. John, O., Wild, R., et al. 2007. A comprehensive phylogeny of beetles reveals the evolutionary origins of a superradiation. Science, 318: 19131916.Google Scholar
Isaka, Y. and Sato, T. 2014. Molecular phylogenetic and divergence time estimation analyses of the sawfly subfamily Selandriinae (Hymenoptera: Tenthredinidae). Entomological Science, 17: 435439. doi: 10.1111/ens.12080.Google Scholar
Janz, N., Nylin, S., and Wahlberg, N. 2006. Diversity begets diversity: host expansions and the diversification of plant-feeding insects. BMC Evolutionary Biology, 6: 4. doi:10.1186/1471-2148-6-4.CrossRefGoogle ScholarPubMed
Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., et al. 2007. Clustal W and clustal X version 2.0. Bioinformatics, 23: 29472948.Google Scholar
Leppänen, S.A., Altenhofer, E., Liston, A.D., and Nyman, T. 2012. Phylogenetics and evolution of host-plant use in leaf-mining sawflies (Hymenoptera: Tenthredinidae: Heterarthrinae). Molecular Phylogenetics and Evolution, 64: 331341.CrossRefGoogle ScholarPubMed
Maddison, W.P. and Maddison, D.R. 2011. Mesquite: a modular system for evolutionary analysis. Version 2.75. Available from http://mesquiteproject.org [accessed 20 October 2013].Google Scholar
Malm, T. and Nyman, T. 2014. Phylogeny of the symphytan grade of Hymenoptera: new pieces into the old jigsaw (fly) puzzle. Cladistics. doi:10.1111/cla.12069.Google ScholarPubMed
Mayhew, P.J. 2002. Shifts in hexapod diversification and what Haldane could have said. Proceedings of the Royal Society B, 269: 969974.CrossRefGoogle ScholarPubMed
Naito, T. 2004. Species diversity of sawflies in Hyogo Prefecture, central Japan. Museum of Nature and Human Activities, Hyogo, Japan. [In Japanese].Google Scholar
Nee, S., May, R.M., and Harvey, P.H. 1994. The reconstructed evolutionary process. Philosophical Transactions of the Royal Society B, 344: 305311.Google Scholar
Nyman, T., Farrell, B.D., Zinovjev, A.G., and Vikberg, V. 2006. Larval habits, host-plant associations, and speciation in nematine sawflies (Hymenoptera: Tenthredinidae). Evolution, 60: 16221637.Google Scholar
Quek, S.P., Davies, S.J., Itino, T., and Pierce, N.E. 2004. Codiversification in an ant-plant mutualism: stem texture and the evolution of host use in Crematogaster (Formicidae: Myrmicinae) inhabitants of Macaranga (Euphorbiaceae). Evolution, 58: 554570.Google Scholar
Rambaut, A. and Drummond, A.J. 2009. Tracer v1.5 [online]. Available from http://tree.bio.ed.ac.uk/software/tracer/ [accessed 17 August 2011].Google Scholar
Rasnitsyn, A.P. 2010. Molecular phylogenetics, morphological cladistics, and fossil record. Entomological Review, 90: 263298.Google Scholar
Rasnitsyn, A.P. and Zhang, H. 2004. Composition and age of the Daohugou hymenopteran (Insecta, Hymenoptera=Vespida) assemblage from Inne Mongolia, China. Palaeontology, 47: 15071517.Google Scholar
Ronquist, F. and Huelsenbeck, J.P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19: 15721574.Google Scholar
Ronquist, F., Klopfstein, S., Vilhelmsen, L., Schulmeister, S., Murray, D.L., and Rasnitsyn, A.P. 2012. A total-evidence approach to dating with fossils, applied to the early radiation of the Hymenoptera. Systematic Biology, 61: 973999. doi:10.1093/sysbio/sys058.Google Scholar
Sanderson, M.J. and Donaghue, M.J. 1994. Shift in diversification rate with the origin of the angiosperms. Science, 264: 15901593.Google Scholar
Schmidt, S. and Smith, D.R. 2006. An annotated systematics world catalogue of the Pergidae (Hymenoptera). Contributions of the American Entomological Institute, 34: 1207.Google Scholar
Schneider, H., Schuettpelz, E., Pryer, K.M., Cranfill, R., Magallón, S., and Lupia, R. 2004. Fern diversified in the shadow of angiosperms. Nature, 428: 553557.Google Scholar
Schulmeister, S. 2003a. Review of morphological evidence on the phylogeny of basal Hymenoptera (Insecta), with a discussion of the ordering of characters. Biological Journal of the Linnean Society, 79: 209243.Google Scholar
Schulmeister, S. 2003b. Simultaneous analysis of basal Hymenoptera (Insecta): introducing robust-choice sensitivity analysis. Biological Journal of the Linnean Society, 79: 245275.Google Scholar
Schulmeister, S., Wheeler, W.C., and Carpenter, J.M. 2002. Simultaneous analysis of the basal lineages of Hymenoptera (Insecta) using sensitivity analysis. Cladistics, 18: 455484.Google Scholar
Sharkey, M.J. 2007. Phylogeny and classification of Hymenoptera. Zootaxa, 1668: 521548.Google Scholar
Sharkey, M.J., Carpenter, J.M., Vilhelmsen, L., Heraty, J., Liljeblad, J., Dowling, A.P.G., et al. 2012. Phylogenetic relationships among superfamilies of Hymenoptera. Cladistics, 28: 80112.Google Scholar
Shcherbakov, D.E. 2006. Fern sawfly larvae Blasticotoma filiceti Klug, 1834 (Hymenoptera: Blasticotomidae) are visited by ants: a new kind of trophobiosis. Russian Entomological Journal, 15: 6772.Google Scholar
Smith, S.A., Beaulieu, J.M., and Donoghue, M.J. 2010. An uncorrelated relaxed-clock analysis suggests an earlier origin for flowering plants. Proceedings of the National Academy of Sciences, 107: 58975902.Google Scholar
Sunnucks, P. and Hales, D.F. 1996. Numerous transposed sequences of mitochondrial cytochrome oxidase I–II in aphids of the genus Sitobion (Hemiptera: Aphididae). Molecular Biology and Evolution, 13: 510524.Google Scholar
Taeger, A. and Blank, S.M. 2011. ECatSym v. 3.10 (Electronic World Catalog of Symphyta) [online]. Available from http://www.sdei.de/ecatsym/ [accessed 27 March 2012].Google Scholar
Taeger, A., Blank, S.M., and Liston, A.D. 2010. World catalog of Symphyta (Hymenoptera). Zootaxa, 2580: 11064.Google Scholar
Tanabe, A.S. 2007. Kakusan: a computer program to automate the selection of a nucleotide substitution model and the configuration of a mixed model on multilocus data. Molecular Ecology Note, 7: 962964. Available from http://www.fifthdimension.jp/products/kakusan/ [accessed 27 March 2011].Google Scholar
Vilhelmsen, L. 2001. Phylogeny and classification of the extant basal lineages of the Hymenoptera (Insecta). Zoological Journal of the Linnean Society, 131: 393442.Google Scholar
Vilhelmsen, L. 2006. Developments in ‘symphytan’ phylogenetics in the 20th century: towards a consensus. In Recent sawfly research: synthesis and prospects. Edited by S.M. Blank, S. Schmidt, and A. Taeger. Goecke and Evers, Keltern, Germany. Pp. 3138.Google Scholar
Wiegmann, B.M., Regier, J.C., and Mitter, C. 2002. Combined molecular and morphological evidence on the phylogeny of the earliest lepidopteran lineages. Zoologica Scripta, 31: 6781.CrossRefGoogle Scholar
Yoshida, H. 2006. Symphyta (Hymenoptera) of Osaka Prefecture, Japan. West Japan Hymenopterists’ Club, Kakogawa, Japan. [In Japanese].Google Scholar
Zhang, J. 1985. New data of the mesozoic fossil insects from laiyang in shandong. Geology of Shandong, 1: 2339.Google Scholar
Supplementary material: PDF

Isaka and Sato Supplementary Material

Figure S1

Download Isaka and Sato Supplementary Material(PDF)
PDF 463.3 KB
Supplementary material: PDF

Isaka and Sato Supplementary Material

Figure S2

Download Isaka and Sato Supplementary Material(PDF)
PDF 406.8 KB
Supplementary material: File

Isaka and Sato Supplementary Material

Table S1

Download Isaka and Sato Supplementary Material(File)
File 9.5 KB
Supplementary material: File

Isaka and Sato Supplementary Material

Table S2

Download Isaka and Sato Supplementary Material(File)
File 9.6 KB
Supplementary material: File

Isaka and Sato Supplementary Material

Table S3

Download Isaka and Sato Supplementary Material(File)
File 46.5 KB
Supplementary material: File

Isaka and Sato Supplementary Material

Table S4

Download Isaka and Sato Supplementary Material(File)
File 42.4 KB