Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-26T04:51:26.807Z Has data issue: false hasContentIssue false

VERTICAL DISPLACEMENT OF IPS LATIDENS AND IPS PINI (COLEOPTERA: SCOLYTIDAE) BY SEMIOCHEMICAL INTERRUPTION

Published online by Cambridge University Press:  31 May 2012

Daniel R. Miller
Affiliation:
Centre for Pest Management, Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6

Abstract

The effect of semiochemical interruptants was examined for Ips latidens (LeConte) and Ips pini (Say) using artificial trees (tall-traps) consisting of an array of seven Lindgren multiple-funnel traps suspended vertically on a rope ladder. S-(+)-Ipsdienol reduced the numbers of I. latidens captured in (±)-ipsenol-baited funnel traps relative to funnel traps immediately above them and to control tall-traps. The combination of (±)-exo-brevicomin and cis- and trans-verbenol reduced the numbers of I. pini captured in (±)-ipsdienol-baited funnel traps relative to funnel traps immediately above them and to control tall-traps. These results provide support for semiochemical-based pest-management tactics that utilize a point source of interruptant at the base of a tree while noting limitations in behavioural effects and efficacy.

Résumé

Nous avons testé les effets d’inhibiteurs sémiochimiques chez Ips latidens (LeConte) et Ips pini (Say) en utilisant des arbres artificiels (arbres-pièges) composés de sept pièges Lindgren à plusieurs entonnoirs suspendus verticalement sur une échelle de corde. Le S-(+)-ipsdiénol a réduit le nombre de I. latidens capturés dans des pièges à entonnoirs garnis de (±)-ipsénol comparativement au nombre capturé dans les pièges à entonnoirs installés immédiatement au-dessus et dans les arbres-pièges témoins. La combinaison de (±)-exo-brévicomine et de cis- et trans-veibénol a eu pour effet de réduire le nombre d’I. pini capturés dans les pièges à entonnoirs garnis de (±)-ipsdiénol comparativement au nombre capturé dans les pièges témoins situés immédiatement au-dessus et dans les arbres-pièges témoins. Ces résultats justifient le recours à des tactiques d’aménagement sémiochimiques qui utilisent une substance inhibitrice ponctuelle placée à la base d’un arbre, mais soulignent l’importance de tenir compte des limites de l’efficacité de la méthode et de ses effets sur le comportement.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amman, G.D., Lindgren, B.S. 1995. Semiochemicals for management of mountain pine beetle: status of research and application. pp. 1422in Salom, S.M., Hobson, K.R. (Tech Eds), Application of Semiochemicals for Management of Bark Beetle Infestations, Proceedings of an Informal Conference. United States Department of Agriculture Forest Service General Technical Report INT–GTR–318Google Scholar
Amman, G.D., Thier, R.W., McGregor, M.D., Schmitz, R.E. 1989. Efficacy of verbenone in reducing lodgepole pine infestation by mountain pine beetles in Idaho. Canadian Journal of Forest Research 19: 60–4CrossRefGoogle Scholar
Amman, G.D., Thier, R.W., Weatherby, J.C., Rasmussen, L.A., Munson, A.S. 1991. Optimum dosage of verbenone to reduce infestation of mountain pine beetle in lodgepole pine stands in central Idaho. United States Department of Agriculture Forest Service Research Paper INT–446Google Scholar
Bentz, B., Lister, C.K., Schmid, J.M., Mata, S.A., Rasmussen, L.A., Haneman, D. 1989. Does verbenone reduce mountain pine beetle attacks in susceptible stands of ponderosa pine? United States Department of Agriculture Forest Service Research Note RM–495Google Scholar
Billings, R.F. 1985. Southern pine bark beetles and associated insects: effects of rapidly-released host volatiles on response to aggregation pheromones. Zeitschrift für Angewandte Entomologie 99: 483–91CrossRefGoogle Scholar
Billings, R.F.. Berisford, C.W., Salom, S.M., Payne, T.L. 1995. Applications of semiochemicals in the management of southern pine beetle infestations: current status of research. pp. 30–8 in Salom, S.M., Hobson, K.R. (Tech Eds), Application of Semiochemicals for Management of Bark Beetle Infestations, Proceedings of an Informal Conference. United States Department of Agriculture Forest Service General Technical Report INT–GTR–318Google Scholar
Birch, M.C. 1984. Aggregation in bark beetles. pp. 331–53 in Bell, W.J., Cardé, R.T. (Eds), Chemical ecology of insects. Sunderland: Sinauer AssociatesGoogle Scholar
Birch, M.C., Svihra, P. 1979. Novel approaches to forest insect control: exploiting olfactory interactions between species of Scolytidae. pp. 135–8 in Walters, W.E. (Ed), Current topics in forest entomology. New York: John Wiley and Sons, Inc.Google Scholar
Birch, M.C., Light, D.M., Wood, D.L., Browne, L.E., Silverstein, R.M., Bergot, B.J., Ohloff, G., West, J.R., Young, J.C. 1980 a. Pheromonal attraction and allomonal interruption of Ips pini in California by the two enantiomers of ipsdienol. Journal of Chemical Ecology 6: 703–17Google Scholar
Birch, M.C., Svihra, P., Paine, T.D., Miller, J.C. 1980 b. Influence of chemically mediated behavior on host tree colonization by four cohabiting species of bark beetles. Journal of Chemical Ecology 6: 395414Google Scholar
Borden, J.H. 1982. Aggregation pheromones. pp. 74139in Mitton, J.B., Sturgeon, K.B. (Eds), Bark beetles in North American conifers: a system for the study of evolutionary biology. Austin: University of Texas PressGoogle Scholar
Borden, J.H. 1989. Semiochemicals and bark beetle populations: exploitation of natural phenomena by pest management strategists. Holarctic Ecology 12: 501–10Google Scholar
Borden, J.H. 1994. Future of semiochemicals for the management of bark beetle populations. pp. 510in Shea, P.J. (Technical Coordinator), Proceedings of the Symposium on Management of Western Bark Beetles with Pheromones: Research and Development. United States Department of Agriculture Forest Service General Technical Report PSW–GTR–150Google Scholar
Borden, J.H. 1995. From identifying semiochemicals to developing a suppression tactic: a historical review. pp. 310in Salom, S.M., Hobson, K.R. (Tech Eds), Application of Semiochemicals for Management of Bark Beetle Infestations, Proceedings of an Informal Conference. United States Department of Agriculture Forest Service General Technical Report INT–GTR–318Google Scholar
Borden, J.H., Devlin, D.R., Miller, D.R. 1992. Synomones of two sympatric species deter attack by the pine engraver, Ips pini (Coleoptera: Scolytidae). Canadian Journal of Forest Research 22: 381–7Google Scholar
Byers, J.A. 1989. Chemical ecology of bark beetles. Experientia 45: 271–83CrossRefGoogle Scholar
Coster, J.E., Payne, T.L., Hart, E.R., Edson, L.J. 1977. Aggregation of the southern pine beetle in response to attractive host trees. Environmental Entomology 6: 725–31CrossRefGoogle Scholar
Dixon, W.N., Payne, T.L. 1979. Sequence of arrival and spatial distribution of entomophagous and associate insects of southern pine beetle-infested trees. Texas Agriculture Experiment Station Miscellaneous Publication 1432Google Scholar
Furniss, R.L., Carolin, V.M. 1980. Western forest insects. United States Department of Agriculture Forest Service Miscellaneous Publication 1339Google Scholar
Gibson, K.E., Schmitz, R.F., Amman, G.D., Oakes, R.D. 1991. Mountain pine beetle response to different dosages in pine stands of western Montana. United States Department of Agriculture Forest Service Research Paper INT–444Google Scholar
Hayes, J.L., Strom, B.L., Roton, L.M., Ingram, L.L. Jr. 1994. Repellent properties of the host compound 4-allylanisole to the southern pine beetle. Journal of Chemical Ecology 20: 15951615Google Scholar
Hedden, R., Vité, J.P., Mori, K. 1976. Synergistic effect of a pheromone and a kairomone on host selection. Nature (London) 261: 696–7CrossRefGoogle Scholar
Holsten, E.H., Werner, R.A. 1987. Use of MCH bubblecaps in preventing spruce beetle attacks in Alaska. United States Department of Agriculture Forest Service Forest Pest Management Technical Report R10–12Google Scholar
Kohnle, U., Vité, J.P., Meyer, H., Francke, W. 1994. Response of four American engraver bark beetles, Ips spp. (Col., Scolytidae), to synthetic racemates of chiral pheromones. Journal of Applied Entomology 117: 451–6CrossRefGoogle Scholar
Lanier, G.N., Cameron, E.A. 1969. Secondary sexual characters in the North American species of the genus Ips (Coleoptera: Scolytidae). The Canadian Entomologist 101: 862–70CrossRefGoogle Scholar
Lanier, G.N., Classon, A., Stewart, T., Piston, J.J., Silverstein, R.M. 1980. Ips pini: the basis for interpopulational differences in pheromone biology. Journal of Chemical Ecology 6: 677–87Google Scholar
Lindgren, B.S. 1983. A multiple-funnel trap for scolytid beetles. The Canadian Entomologist 115: 299302Google Scholar
Lindgren, B.S., Borden, J.H., Cushon, G.H., Chong, L.J., Higgins, C.J. 1989. Reduction of mountain pine beetle (Coleoptera: Scolytidae) attacks by verbenone in lodgepole pine stands in British Columbia. Canadian Journal of Forest Research 19: 65–8Google Scholar
Lister, C.K., Schmid, J.M., Mata, S.A., Haneman, D., O'Neil, C., Pasek, J., Sower, L. 1990. Verbenone bubble caps ineffective as a preventative strategy against mountain pine beetle attacks in ponderosa pine. United States Department of Agriculture Forest Service Research Note RM–501Google Scholar
Miller, D.R. 1991. Reproductive and ecological isolation: community structure in the use of semiochemicals by pine bark beetles (Coleoptera: Scolytidae). Ph.D. thesis, Simon Fraser University, Burnaby, British ColumbiaGoogle Scholar
Miller, D.R., Borden, J.H. 1985. Life history and biology of Ips latidens (LeConte) (Coleoptera: Scolytidae). The Canadian Entomologist 117: 859–71Google Scholar
Miller, D.R., Borden, J.H. 1992. (S)-(+)-Ipsdienol: interspecific inhibition of Ips latidens (LeConte) by Ips pini (Say) (Coleoptera: Scolytidae). Journal of Chemical Ecology 18: 1577–82Google Scholar
Miller, D.R., Borden, J.H., King, G.G.S., Slessor, K.N. 1991. Ipsenol: an aggregation pheromone for Ips latidens (LeConte) (Coleoptera: Scolytidae). Journal of Chemical Ecology 17: 1517–27CrossRefGoogle ScholarPubMed
Miller, D.R., Borden, J.H., Slessor, K.N. 1996. Enantiospecific pheromone production and response profiles for populations of pine engraver, Ips pini (Say) (Coleoptera: Scolytidae), in British Columbia. Journal of Chemical Ecology 22: 2157–72CrossRefGoogle ScholarPubMed
Paine, T.D., Bertram, S.L. 1995. Management potential of semiochemicals for protection of trees from western pine beetle. pp. 1113in Salom, S.M., Hobson, K.R. (Tech Eds), Application of Semiochemicals for Management of Bark Beetle Infestations, Proceedings of an Informal Conference. United States Department of Agriculture Forest Service General Technical Report INT–GTR–318Google Scholar
Paine, T.D., Birch, M.C., Svihra, P. 1981. Niche breadth and resource partitioning by four sympatric species of bark beetles (Coleoptera: Scolytidae). Oecologia 48: 16Google Scholar
Payne, T.L., Coster, J.E., Richerson, J.V., Edson, L.J., Hart, E.R. 1978. Field response of the southern pine beetle to behavioral chemicals. Environmental Entomology 7: 578–82Google Scholar
Payne, T.L., Richerson, J.V., Dickens, J.C., West, J.R., Mori, K., Berisford, C.W., Hedden, R.L., Vité, J.P., Blum, M.S. 1982. Southern pine beetle: olfactory receptor and behavior discrimination of enantiomers of the attractant pheromone frontalin. Journal of Chemical Ecology 8: 873–81Google Scholar
Poland, T.M., Borden, J.H., Stock, A.J., Chong, L.J. 1998. Green leaf volatiles disrupt responses by the spruce beetle, Dendroctonus rufipennis, and the western pine beetle, Dendroctonus brevicomis (Coleoptera: Scolytidae) to attractant-baited traps. Journal of the Entomological Society of British Columbia 95: 1724Google Scholar
Renwick, J.A.A., Vité, J.P. 1972. Pheromones and host volatiles that govern aggregation of the six-spined engraver beetle, Ips calligraphus. Journal of Insect Physiology 18: 1215–19Google Scholar
Richerson, J.V., Payne, T.L. 1979. Effects of bark beetle inhibitors on landing and attack behavior of the southern pine beetle and beetle associates. Environmental Entomology 8: 360–4CrossRefGoogle Scholar
Ross, D.W., Gibson, K.E., Thier, R.W., Munson, A.S. 1996. Optimal dose of an antiaggregation pheromone (3-methylcyclohex-2-en-1-one) for protecting live Douglas-firs from attack by Dendroctonus pseudotsugae (Coleoptera: Scolytidae). Journal of Economic Entomology 89: 1204–7Google Scholar
Shea, P.J., Neustein, M. 1995. Protection of a rare stand of Torrey pine from Ips paraconfus. pp. 3943in Salom, S.M., Hobson, K.R. (Tech Eds), Application of Semiochemicals for Management of Bark Beetle Infestations, Proceedings of an Informal Conference. United States Department of Agriculture Forest Service General Technical Report INT–GTR–31Google Scholar
Shea, P.J., McGregor, M.D., Daterman, G.E. 1992. Aerial application of verbenone reduces attack of lodgepole pine by mountain pine beetles. Canadian Journal of Forest Research 22: 436–41Google Scholar
Shore, T.L., Safranyik, L., Lindgren, B.S. 1992. The response of mountain pine beetle (Dendroctonus ponderosae) to lodgepole pine trees baited with verbenone and exo-brevicomin. Journal of Chemical Ecology 18: 533–41Google Scholar
Smith, M.T., Payne, T.L., Birch, M.C. 1990. Olfactory-based behavioral interactions among five species in the southern pine bark beetle group. Journal of Chemical Ecology 16: 3317–31Google Scholar
Smith, M.T., Salom, S.M., Payne, T.L. 1993. The southern pine bark beetle guild: an historical review of the research on the semiochemical-based communication system of the five principal species. Virginia Agricultural Experiment Station Bulletin 93–4Google Scholar
Stewart, T.E. 1975. Volatiles isolated from Ips pini: isolation, identification, enantiomeric composition, biological activity, and the enantiomeric composition of other insect pheromone alcohols and bicyclic ketals. M.Sc. thesis, College of Environmental Science and Forestry, State University of New York, Syracuse, New YorkGoogle Scholar
Svihra, P., Paine, T.D., Birch, M.C. 1980. Interspecific olfactory communications in southern pine beetles. Naturwissenschaften 67: 518–9Google Scholar
Vité, J.P. 1971. Pest management systems using synthetic pheromones. Contributions of the Boyce Thompson Institute 24: 343–50Google Scholar
Vité, J.P., Francke, W. 1992. Research needs and technology transfer. Journal of Applied Entomology 114: 212–5Google Scholar
Vité, J.P., Hedden, R., Mori, K. 1976. Ips grandicollis: field responses to the optically pure pheromone. Naturwissenschaften 63: 582–3Google Scholar
Vité, J.P., Ohloff, G., Billings, R.F. 1978. Pheromonal chirality and integrity of aggregation response in southern species of the bark beetle Ips sp. Nature (London) 272: 817–8Google Scholar