Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-24T17:01:00.823Z Has data issue: false hasContentIssue false

VARIATION IN SPRING EMERGENCE PATTERNS AMONG WESTERN CHORISTONEURA SPP. (LEPIDOPTERA: TORTRICIDAE) POPULATIONS IN SOUTHERN OREGON

Published online by Cambridge University Press:  31 May 2012

W. Jan A. Volney
Affiliation:
Division of Entomology and Parasitology, University of California, Berkeley 94720
William E. Waters
Affiliation:
Division of Entomology and Parasitology, University of California, Berkeley 94720
R. Patrick Akers
Affiliation:
Division of Entomology and Parasitology, University of California, Berkeley 94720
Andrew M. Liebhold
Affiliation:
Division of Entomology and Parasitology, University of California, Berkeley 94720

Abstract

An analysis of the times to emergence in three sparse populations of Choristoneura spp. in western North America indicates that there was considerable variation in the calculated threshold of development among populations. Also, the number of heat units required to effect the emergence of any specified proportion of the population varied considerably among populations. The pattern of intra-population variation in times to emergence is such that the within-family variation was much larger than the among-family variation in the two populations from areas in which white fir is the only host. In the other population, from an area with a mixed stand of Douglas-fir and white fir, the pattern is reversed. This pattern remains even after an accounting is made for the parental host and larval color morph. It is hypothesized that the pattern of variation in the times to emergence may be due to the presence, in the latter population, of physiological morphs which cannot be recognized either by their appearance or their host of origin. These results have clear implications for pest management procedures which attempt to schedule activities related to the emergence of these insects in the spring.

Résumé

Une analyse des temps d'émergence chez trois populations dispersées de Choristoneura spp. dans l'ouest de l'Amérique du Nord a indiqué qu'il y a une variation considérable du seuil calculé de développement entre populations. De plus, le nombre d'unités thermiques requises pour l'émergence d'une proportion quelconque de la population a varié considérablement entre populations. La structure de la variation intra-population pour le temps d'émergence était telle que la variation intra-famille était beaucoup plus grande que la variation inter-famille, chez deux populations provenant de sites où le sapin du Colorado était le seul hôte. Chez l'autre population, qui provenait d'un site où le sapin Douglas et le sapin du Colorado étaient mélangés, la structure de la variation est inverse. Cette structure est demeurée même après avoir tenu compte de l'hôte parental et de la couleur de la morphe. Une hypothèse est avancée voulant que la structure de la variation pour le temps requis jusqu'à l'émergence soit causée par la présence, au sein de cette dernière population, de morphes physiologiques non reconnaissables à leur apparence ou à leur hôte d'origine. Ces résultats ont des implications claires pour la surveillance de l'activité d'émergence de ces insectes au printemps, dans le cadre des programmes de lutte.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bean, J. L. 1961. Predicting emergence of second-instar spruce budworm larvae from hibernation under field conditions in Minnesota. Ann. ent. Soc. Am. 54: 175177.CrossRefGoogle Scholar
Cameron, D. G., McDougall, G. A., and Bennett, C. W.. 1968. Relation of spruce budworm development and balsam fir shoot growth to heat units. J. econ. Ent. 61: 857858.CrossRefGoogle Scholar
Campbell, A., Frazer, B. D., Gilbert, N., Gutierrez, A. P., and Mackauer, M.. 1974. Temperature requirements of some aphids and their parasites. J. appl. Ecol. 11: 431438.CrossRefGoogle Scholar
Dolph, R. E. 1980. Budworm activity in Oregon and Washington 1947–1979. U.S. Dept. Agric. Forest Service, Pacific Northwest Region. R6-FIDM-033-1980.Google Scholar
Falconer, D.S. 1960. Quantitative Genetics. Oliver and Boyd, Edinburgh and London.Google Scholar
Harvey, G. T. and Stehr, G.. 1967. On coniferophagous species of Choristoneura (Lepidoptera: Tortricidae) in North America. III. Some characters of immature forms helpful in the identification of species. Can. Ent. 99: 464481.CrossRefGoogle Scholar
Henson, W. R. 1948. Influence of meteorological factors on the behavior of the spruce budworm. Bi-mon. Prog. Rep., For. Insect Invest. Dep. Agric. Can. 4(6): 2.Google Scholar
Johnson, N. L. and Kotz, S.. 1970. Continuous univariate distributions. Houghton Mifflin, New York.Google Scholar
Lyon, R. L., Richmond, C. E., Robertson, J. L., and Lucas, B. A.. 1972. Rearing diapause and diapause-free western spruce budworm (Choristoneura occidentalis) (Lepidoptera: Tortricidae) on an artificial diet. Can. Ent. 104: 417426.CrossRefGoogle Scholar
Miller, C. A., Eidt, D. C., and McDougall, G. A.. 1971. Predicting spruce budworm development. Bi-mon. Res. Notes Can. Dep. Environ., For. Serv. 27: 3334.Google Scholar
Morris, R. F. and Fulton, W. C.. 1970. Models for the development and survival of Hyphantria cunea in relation to temperature and humidity. Mem. ent. Soc. Can. 70. 60 pp.Google Scholar
Powell, J. A. 1980. Nomenclature of Nearctic conifer feeding Choristoneura (Lepidoptera: Tortricidae): Historical review and present status. U.S. Dep. Agric. For. Serv. Pacif. NW For. & Range Exp. Stn Gen. Tech. Rep. PNW-100.Google Scholar
Robertson, J. L. 1979. Rearing the western spruce budworm. USDA Misc. Publ. Canada/United States Spruce Budworms Program.Google Scholar
Rose, A. H. and Blais, J. R.. 1954. A relation between April and May temperatures and spruce budworm larval emergence. Can. Ent. 86: 174177.CrossRefGoogle Scholar
Schmidt, F. H. 1977. Differences in thermal requirements for diapause termination in two western Choristoneura spp. (Lepidoptera: Tortricidae). Can. Ent. 109: 14691474.CrossRefGoogle Scholar
Sharpe, P. J. H. and DeMichele, D. W.. 1977. Reaction kinetics of poikilotherm development. J. theor. Biol. 64: 649670.CrossRefGoogle ScholarPubMed
Shepherd, R. F. 1961. A comparison of the developmental rates of one- and two-year cycle budworm. Can. Ent. 93: 764771.CrossRefGoogle Scholar
Stehr, G. 1964. The determination of sex and polymorphism in microevolution. Can. Ent. 96: 418428.CrossRefGoogle Scholar
Stehr, G. 1967. On coniferophagous species of Choristoneura (Lepidoptera: Tortricidae) in North America. II. Geographic distribution in accordance with forest regions. Can. Ent. 99: 456463.CrossRefGoogle Scholar
Thomas, A. W. 1976. The effects of temperature on the emergence of second-instar spruce budworm larvae. Can. For. Serv., Dep. Environ., Mar. For. Res. Centre Info. Rep. M-X-60.Google Scholar
Wagg, J. W. B. 1958. Environmental factors affecting spruce budworm growth. Oregon For. Lands Res. Cent. Res. Bull. 11.Google Scholar
Waters, W. E. and Volney, W. J. A.. Sampling and analysis of endemic western spruce budworm populations. In Site Characteristics and Population Dynamics of Lepidopteran and Hymenopteran Forest Pests. Brit. For. Comm. (in press).Google Scholar