Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-28T06:10:10.907Z Has data issue: false hasContentIssue false

TOXICOLOGICAL AND ELECTROPHORETIC POPULATION CHARACTERISTICS OF WESTERN SPRUCE BUDWORM, CHORISTONEURA OCCIDENTALIS (LEPIDOPTERA: TORTRICIDAE)

Published online by Cambridge University Press:  31 May 2012

J. L. Robertson
Affiliation:
Pacific Southwest Forest and Range Experiment Station, Forest Service U.S. Department of Agriculture, Berkeley, California 94701
M. W. Stock
Affiliation:
Department of Forest Resources, University of Maho, Moscow, Idaho 83843

Abstract

The responses of 11 population samples of sixth-instar larvae of the western spruce budworm, Choristoneura occidentalis Freeman, to carbaryl spray were determined. Representatives of one population each from Arizona, Idaho, Montana, New Mexico, and Washington were included. Five response levels of progressively higher tolerance were apparent; the most tolerant population sample was ca. 18 times more tolerant than the most susceptible sample to carbaryl. Trends in relationships of site characteristics and response to carbaryl were not evident. Previous spray history of an area, however, appeared to be related to response at a site; populations from sites sprayed with DDT were significantly more tolerant than those from sites where DDT had not been used. The most tolerant groups were collected from a Montana population in an area where both DDT and carbaryl had been applied. The electrophoretic characteristics of each population sample were determined. No loci detectable by electrophoresis were correlated with response to carbaryl.

Résumé

On a étudié la réponse de 11 populations de larves du sixième stade de la tordeuse occidentale de l'épinette, Choristoneura occidentalis Freeman, à un arrosage au carbaryl. Des individus provenant d'une population de chacun des états de l'Arizona, de l'Idaho, du Montana, du Nouveau-Mexique et de Washington étaient inclus. On a détecté cinq niveaux de tolérance croissante au carbaryl, et la population la plus tolérante s'est avérée environ 18 fois plus tolérante que celle la plus susceptible. On n'a pas observé de tendances évidentes qui duraient pu relier la réponse au traitement à des caractéristiques du milieu. Cependant, l'historique des arrosages dans la région est apparue liée à la réponse observée en un site donné : les populations ayant été arrosées au DDT se sont avérées plus tolérantes que celles provenant de sites n'ayant pas reçu de DDT. Les larves les plus tolérantes provenaient d'une population du Montana dans une région ayant reçu du DDT et du carbaryl. Les profiles électrophorétiques de chaque échantillon des populations inclues ont été établis. Aucun des loci démontrables par électrophorèse n'a pu être corrélé à la réponse au carbaryl.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Dauterman, W. C. 1976. Extramicrosomal metabolism of insecticides. pp. 149–176 in Wilkinson, C. F. (Ed.), Insecticide Biochemistry and Physiology. Plenum Press, NY. 768 pp.Google Scholar
Dolph, R. E. Jr., 1980. Budworm Activity Oregon and Washington 1947–1979. Forest Insect and Disease Management Region 6, R6-FIDM-033. U.S. Dep. Agric., Forest Serv., Portland, OR. 54 pp.Google Scholar
Georghiou, G. P. 1972. The evolution of resistance to pesticides. A. Rev. Ecol. Syst. 3: 133168.CrossRefGoogle Scholar
Haverty, M. I. and Robertson, J. L.. 1982. Laboratory bioassays for selecting candidate insecticides and application rates for field tests on the western spruce budworm. J. econ. Ent. 75: 179182.CrossRefGoogle Scholar
Johnson, P. C. and Denton, R. E.. 1975. Outbreaks of the western spruce budworm in the American northern Rocky Mountain area from 1922 through 1971. Gen. Tech. Rep. (INT-20. Intermountain Forest and Range Exp. Stn., Forest Serv., U.S. Dep. Agric., Ogden, UT. 145 pp.Google Scholar
Kendall, M. G. 1975. Rank Correlation Methods. 4th ed. Ronald Press, London. 202 pp.Google Scholar
Kikkawa, H. 1964. Genetic studies on the resistance to sevin in Drosophila melanogaster. Botyu-Kagaku 29: 3739.Google Scholar
Markin, G. P. and Johnson, D. R.. 1982. Western spruce budworm aerial field test, 1979. Insecticide and Acaricide Tests 7: 203.CrossRefGoogle Scholar
Plapp, F. W. 1976. Biochemical genetics of insecticide resistance. A. Rev. Ent. 21: 179197.CrossRefGoogle ScholarPubMed
Plapp, F. W. Jr., and Johnston, J. S.. 1982. Evidence for the primary role of regulatory gene changes in the evolution of insecticide resistance in the housefly. pp. 65–75 in Stock, M. W. and Bartlett, A. C. (Eds.), The evolutionary significance of insect polymorphism. Forest, Wildl. and Range Exp. Stn., Univ. of Idaho, Moscow, ID. 105 pp.Google Scholar
Robertson, J. L. 1979. Rearing the western spruce budworm. U.S. Dep. Agric. misc. Publ. Canada-United States Spruce Budworm Program. 18 pp.Google Scholar
Robertson, J. L. and Boelter, L. M.. 1979. Toxicity of insecticides to Douglas-fir tussock moth, Orgyia pseudotsugata (Lepidoptera: Lymantriidae) I. Contact and feeding toxicity. Can. Ent. 111: 11451159.CrossRefGoogle Scholar
Robertson, J. L., Boelter, L. M., Russell, R. M., and Savin, N. E.. 1978. Variation in response to insecticides by Douglas-fir tussock moth, Orgyia pseudotsugata (Lepidoptera: Lymantriidae), populations. Can. Ent. 110: 325328.CrossRefGoogle Scholar
Robertson, J. L. and Haverty, M. I.. 1981. Multiphase laboratory bioassays to select chemicals for field testing on the western spruce budworm. J. econ. Ent. 74: 148153.CrossRefGoogle Scholar
Robertson, J. L., Lyon, R. L., Andrews, T. L., Moellman, E. E., and Page, M.. 1979. Moellman spray chamber: versatile research tool for laboratory bioassays. U.S. For. Serv. Res. Note PSW-337. Pacific Southwest Forest and Range Experiment Station, Berkeley, CA. 6 pp., illus.Google Scholar
Robertson, J. L. and Rappaport, N. G.. 1979. Direct, indirect, and residual toxicities of insecticide sprays to western spruce budworm, Choristoneura occidentalis (Lepidoptera: Tortricidae). Can. Ent. 111: 12191226.CrossRefGoogle Scholar
Robertson, J. L., Smith, K. C., Savin, N. E., and Lavigne, R. J.. 1984. Effects of dose placement and sample size on the precision of lethal dose estimates in dose-mortality regression. J. econ. Ent. 77: 833837.CrossRefGoogle Scholar
Roush, R. T. and Wolfenbarger, D. A.. Inheritance of resistance and responses of larval weights to methomyl by the tobacco budworm (Lepidoptera:Noctuidae). J. econ. Ent. (in press).Google Scholar
Russell, R. M., Robertson, J. L., and Savin, N. E.. 1977. POLO: a new computer program for probit analysis. Bull. ent. Soc. Am. 23: 209213.Google Scholar
Savin, N. E., Robertson, J. L., and Russell, R. M.. 1977. A critical review of bioassay in insecticide research: likelihood ratio tests of dose-mortality regression. Bull. ent. Soc. Am. 23: 157266.Google Scholar
Stock, M. W. and Castrovillo, P. J.. 1981. Genetic relationships among representative populations of five Choristoneura species: C. occidentalis, C. retiniana, C. biennis, C. lambertiana, and C. fumiferana (Lepidoptera: Tortricidae). Can. Ent. 113: 857865.CrossRefGoogle Scholar
Stock, M. W. and Robertson, J. L.. 1979. Differential response of Douglas-fir tussock moth, Orgyia pseudotsugata (Lepidoptera: Lymantriidae), populations and sibling groups to acephate and carbaryl: Toxicological and genetic analyses. Can. Ent. 111: 12311239.CrossRefGoogle Scholar
Stock, M. W. and Robertson, J. L.. 1982. Esterase polymorphism and response to insecticides during larval development of the western spruce budworm. J. econ. Ent. 75: 183187.CrossRefGoogle Scholar
Willhite, E. A. and Stock, M. W.. 1983. Genetic variation among western spruce budworm (Choristoneura occidentalis) (Lepidoptera: Tortricidae) outbreaks in Idaho and Montana. Can. Ent. 115: 4154.CrossRefGoogle Scholar