Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-28T12:29:06.543Z Has data issue: false hasContentIssue false

TOXICITY OF INSECTICIDES TO FIRST-INSTAR LARVAE OF THE SPRUCE BUDMOTH, ZEIRAPHERA CANADENSIS MUT. AND FREE. (LEPIDOPTERA: TORTRICIDAE): LABORATORY AND FIELD STUDIES

Published online by Cambridge University Press:  31 May 2012

B.V. Helson
Affiliation:
Forest Pest Management Institute, Canadian Forestry Service, PO Box 490, Sault Ste. Marie, Ontario, Canada P6A 5M7
P. de Groot
Affiliation:
Forest Pest Management Institute, Canadian Forestry Service, PO Box 490, Sault Ste. Marie, Ontario, Canada P6A 5M7
J.J. Turgeon
Affiliation:
Forest Pest Management Institute, Canadian Forestry Service, PO Box 490, Sault Ste. Marie, Ontario, Canada P6A 5M7
E.G. Kettela
Affiliation:
Canadian Forestry Service — Maritimes, PO Box 4000, Fredericton, New Brunswick, Canada E3B 5W7

Abstract

Laboratory tests with selected carbamate, organophosphorus, and pyrethroid insecticides demonstrated that the pyrethroid permethrin has the best potential for controlling newly hatched larvae of Zeiraphera canadensis Mut. and Free. Permethrin possessed high crawling contact toxicity (toxicity of insecticide deposits on foliage when contacted by crawling larvae) and direct contact toxicity to first-instar larvae and exhibited long residual effectiveness on potted, white spruce trees. Chlorpyrifos, fenitrothion, mexacarbate, and methomyl had high crawling contact toxicity but short residual activity. Azinphos-methyl appeared to possess long residual effectiveness but relatively low crawling contact toxicity. Aminocarb and thiodicarb exhibited short residual effectiveness and relatively low toxicity. In field trials, an aerial application of permethrin (70 g/ha) at egg hatch resulted in an 81% population reduction and limited the destruction of tree leaders to 9%. Leader destruction was greater than 19% after treatments of permethrin at 35 g AI/ha or aminocarb at 180 g AI/ha or aminocarb twice at 90 g AI/ha. Leader destruction in an untreated plantation was 51%.

Résumé

Des essais réalisés en laboratoire avec des insecticides ont démontré que parmi les carbamates, les organophosphates, et les pyréthroides testés, la perméthrine qui est un pyréthroide était le candidat le plus prometteur pour le contrôle sur le terrain des larves de Zeiraphera canadensis Mut. et Free, lors de la période d’éclosion. La toxicité de la perméthrine appliquée directement sur les larves ou sur du feuillage sur lequel on a permis à des larves du premier stade de se déplacer librement avant de s’établir sous les bourgeons fut très élevé. Le taux de mortalité des larves déposées sur le feuillage d’épinettes blanches en pots, 5 jours après l’application de la perméthrine fut similaire à celui obtenu pour les larves déposées 1 h après l’application, indiquant ainsi une longue rémanence. La toxicité du chlorpyrifos, du fénitrothion, du mexacarbate et du méthomyle via le feuillage fut élevée, mais leur rémanence sur le feuillage des épinettes blanches en pot fut de courte durée. Bien que la rémanence de l’azinphos-méthyl sembla de longue durée, sa toxicité via le feuillage fut relativement faible. L’aminocarbe et le thiodicarbe ont démontré une rémanence courte et une toxicité via le feuillage faible. Un épandage aérien de perméthrine réalisé au Nouveau Brunswick, à raison de 70 g IA/ha au début de la période d’éclosion des larves, a réduit la population de Z. canadensis de 81%, et a limité à 9% la destruction des flèches apicales des épinettes blanches. Pour les placettes traitées avec de la perméthrine à raison de 35 g IA/ha, avec de l’aminocarbe à raison de 180 g IA/ha ou avec deux applications d’aminocarbe à 90 g IA/ha, la destruction des flèches fut supérieure à 19%. Dans la placette témoin, la proportion des flèches apicales détruites atteignit 51%.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, W.S. 1925. A method of computing the effectiveness of an insecticide. J. econ. Ent. 18: 265267.CrossRefGoogle Scholar
Bickle, A. 1968. S103 Probit Single Line and Parallel Line Analysis. A computer program written by Statistical Research Section, Engineering and Statistical Research Institute, Research Branch, Agriculture Canada.Google Scholar
Dixon, W.J. (Ed.). 1983. BMDP Statistical Software. University of California Press, Berkeley, California. 734 pp.Google Scholar
Finney, D.J. 1962. Probit Analysis, 2nd ed. Cambridge University Press. 318 pp.Google Scholar
Hartley, D., and Kidd, H. (Eds.). 1983. The Agrochemicals Handbook. The Royal Society of Chemistry, The University Nottingham. 422 pp.Google Scholar
Hartley, G.S., and Graham-Bryce, I.J.. 1980. Physical Principles of Pesticide Behavior. The dynamics of applied pesticides in the local environment in relation to biological response. Vol. 2. Academic Press. pp. 5191024.Google Scholar
Helson, B.V., Kingsbury, P.D., and de Groot, P.. 1986. The use of bioassays to assess aquatic arthropod mortality from permethrin drift deposits. Aquat. Toxicol. 9: 253262.CrossRefGoogle Scholar
Holmes, J.A., and Osgood, E.A.. 1984. Chemical control of the spruce budmoth, Zeiraphera canadensis Mut. and Free. (Lepidoptera: Olethreutidae) on white spruce in Maine. Univ. Maine Orono, Maine Agric. Exp. Stn. Tech. Bull. 112. 21 pp.Google Scholar
Hudson, R.H., Tucker, R.K., and Haegele, M.A.. 1984. Handbook of Toxicity of Pesticides to Wildlife. U.S. Dept. Interior, Fish Wildlife Serv. Resource Publ. 153. Washington, DC. 90 pp.Google Scholar
Johnson, W.W., and Finley, M.T.. 1980. Handbook of Toxicity of Chemicals to Fish and Aquatic Invertebrates. U.S. Dept. Interior, Fish Wildlife Serv. Resource Publ. 137. Washington, DC. 98 pp.Google Scholar
MacAndrews, A.H. 1927. Biological notes on Zeiraphera fortunana Kft. and ratzerburgiana Ratz. (Eucosmidae, Lepid.). Can. Ent. 59: 2730.CrossRefGoogle Scholar
Magasi, L.P. 1984. Spruce budmoth. p. 7in Forest Pest Conditions in the Maritimes 1983. Maritimes For. Res. Cen., Can. For. Serv. Rep. M–X–149.Google Scholar
Milliken, G.A, and Johnson, D.E.. 1984. Analysis of Messy Data. Vol. 1 Designed Experiments. Lifetime Learning Publications, Belmont, CA. 473 pp.Google Scholar
Neilson, M.M. 1985. Spruce budmoth — a case history: Issues and constraints. For. Chronicle. 61: 252255.Google Scholar
Nigam, P.C. 1975. Chemical insecticides. pp. 9–24 in Prebble, M.L. (Ed.), Aerial Control of Forest Insects in Canada. Can. Dept. of Environment, Ottawa, Canada. 330 pp.Google Scholar
NRCC. 1986. Pyrethroids: their effects on aquatic and terrestrial ecosystems. Assoc. Comm. on Sci. Criteria for Environ. Quality. National Research Council of Canada, Ottawa, Ont.NRCC 24376. 303 pp.Google Scholar
Payne, N., Helson, B., Sundaram, K., Kingsbury, P., Fleming, R., and de Groot, P.. 1986. Estimating the buffer required around water during permethrin applications. Can. For. Serv., Foest Pest Manage. Inst. Inf. Rep. FPM–X–70. 26 pp.Google Scholar
Pilon, J.G. 1965. Bionomics of the spruce budmoth, Zeiraphera ratzerburgiana (Ratz.) (Lepidoptera: Olethreutidae). Phytoprotection 58: 8491.Google Scholar
Rayner, A.C. 1956. Colorimetric estimation of dyed insecticide spray deposit using a paper sampling surface. Can. Ent. 97: 279.CrossRefGoogle Scholar
Robertson, J.L., Gillette, N.L., Look, M., Lucas, B.A., and Lyon, R.L.. 1976. Toxicity of selected insecticides applied to western spruce budworm. J. econ. Ent. 69: 99104.CrossRefGoogle Scholar
Robertson, J.L., Gillette, N.L., Lucas, B.A., Russell, R.M., and Savin, N.E.. 1978. Comparative toxicity of insecticides to Choristoneura species (Lepidoptera: Tortricidae). Can. Ent. 110: 399406.CrossRefGoogle Scholar
Robertson, J.L., and Haverty, M.I.. 1981. Multiphase laboratory bioassays to select chemicals for field-testing on the western spruce budworm. J. econ. Ent. 74: 148153.CrossRefGoogle Scholar
Robertson, J.L., and Rappaport, N.G.. 1979. Direct, indirect and residual toxicities of insecticide sprays to western spruce budworm, Choristoneura occidentalis (Lepidoptera: Tortricidae). Can. Ent. 111: 12191226.CrossRefGoogle Scholar
SAS Institute Inc. 1985. SAS User's Guide: Statistics, Version 5 Edition. SAS Institute Inc., Cary, NC. 956 pp.Google Scholar
Turgeon, J.J. 1985. Life cycle and behavior of the spruce budmoth, Zeiraphera canadensis (Lepidoptera: Olethreutidae), in New Brunswick. Can. Ent. 117: 12391247.CrossRefGoogle Scholar
Turgeon, J.J. 1986. The phenological relationship between the spruce budmoth, Zeiraphera canadensis (Lepidoptera: Olethreutidae), and its primary host, white spruce in northern New Brunswick. Can. Ent. 118: 345350.CrossRefGoogle Scholar
Zylstra, B.F. 1980. A comparison of a visual and an automated drop size measuring technique. Proc. 6th Internat. Agric. Aviation Congress, Piedmont, Italy, Sept. 1980. pp. 318323.Google Scholar