Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-28T10:44:07.206Z Has data issue: false hasContentIssue false

Timing of acaracide treatments for control of low-level populations of Varroa destructor (Acari: Varroidae) and implications for colony performance of honey bees

Published online by Cambridge University Press:  02 April 2012

P. Gatien
Affiliation:
Department of Entomology, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
R.W. Currie*
Affiliation:
Department of Entomology, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
*
1 Corresponding author (e-mail: [email protected]).

Abstract

The timing of acaracide treatments for control of low-level populations of Varroa destructor Anderson et Trueman has implications for colony performance of honey bees, Apis mellifera L. (Hymenoptera: Apidae). Replicated colonies with low levels of V. destructor were left untreated, exposed to fluvalinate at each of two doses for 42 days, or exposed to three applications of formic acid, with the four treatments applied in either spring or fall. Varroa destructor densities were measured by alcohol wash and drop boards, and both gave similar estimates. Over the course of one season, the mean abundance of V. destructor increased from 0.002 to 0.11 mites per bee. Extended broodless periods during winter reduced the mean abundance of V. destructor by 28%, but mite mortality over winter was not high enough to prevent the need for treatment the following year. Apistan® was more effective than formic acid in both spring and fall treatments. Doses of one or two strips of Apistan® per colony were equally effective in spring or fall treatments. The mean abundance of V. destructor remained low throughout the season following spring treatment with either dose of Apistan®. Fall formic-acid treatments were more effective than spring treatments. Fluvalinate residues in samples of honey and wax collected from brood chambers and from honey supers were slightly higher in colonies treated with two strips of Apistan® than with one strip, but no detectible residue was found in extracted honey from 4500 commercial colonies treated in spring with Apistan® one strip per brood chamber for single or double storey hives. The levels of V. destructor in this study did not affect honey production or colony survival over winter.

Résumé

Le calendrier des traitements à l'acaricide dans la lutte contre des populations réduites de Varroa destructor Anderson et Trueman a des conséquences sur le fonctionnement de la colonie d'abeilles domestiques, Apis mellifera L. (Hymenoptera : Apidae). Dans des expériences répétées, des colonies avec de faibles infestations de V. destructor n'ont reçu aucun traitement, ou bien elles ont été exposées au fluvalinate à l'une de deux doses pendant 42 jours, ou encore elles ont été traitées à l'acide formique; ces quatre traitements ont été réalisés au printemps et à l'automne. La densité des V. destructor a été déterminée par des lavages à l'alcool et des dénombrements sur cartons autocollants et les deux méthodes ont donné des estimations semblables. L'abondance moyenne des V. destructor augmente pendant la saison, de 0,002 à 0,11 acarien par l'abeille. La période étendue sans formation de couvain pendant l'hiver réduit l'abondance moyenne des V. destructor de 28 %, mais la mortalité des acariens pendant l'hiver est insuffisante pour annuler le traitement l'année suivante. L'Apistan® est plus efficace que l'acide formique, tant dans les traitements de printemps que dans ceux d'automne. Des doses d'une ou deux languettes d'Apistan® par colonie sont aussi efficaces au printemps qu'en automne. L'abondance moyenne des V. destructor reste faible pendant toute la saison après un traitement au printemps à l'une ou l'autre dose d'Apistan®. Les traitements d'automne à l'acide formique sont plus efficaces que les traitements de printemps. Les résidus de fluvalinate dans des échantillons de miel et de cire provenant du corps de la ruche et des hausses à miel sont légèrement plus élevés dans les colonies traitées avec deux languettes d'Apistan® plutôt qu'avec une seule; il n'y a pas de résidu décelable dans le miel extrait de 4500 colonies commerciales traitées au printemps à l'Apistan®, à raison d'une languette par corps de ruche, que la ruche ait 1 ou 2 étages. Le degré d'infestation de V. destructor dans notre étude n'affecte ni la production de miel, ni la survie de la colonie en hiver.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akimov, I.A.A., Yastrebtsov, A.V., Gorgol, V.T. 1988. Functional and morphological specialization of Varroa jacobsoni for parasitism. pp 475–8 in Needham, G.R., Page, R.E., Delfinado-Baker, M., Bowman, C.E. (Eds), Africanized honey bees and bee mites. Chichester, United Kingdom: Ellis Horwood LtdGoogle Scholar
Anderson, D.L. 1994. Non-reproduction of Varroa jacobsoni in Apis mellifera colonies in Papua New Guinea and Indonesia. Apidologie 25: 412–21CrossRefGoogle Scholar
Ball, B.V. 1985. Acute paralysis virus isolates from honeybee colonies infested with Varroa jacobsoni. Journal of Apicultural Research 24: 115–9CrossRefGoogle Scholar
Ball, B.V. 1988. The incidence of acute paralysis virus in adult honeybee and mite populations. pp 95–8 in Cavalloro, R. (Ed), European Research on Varroatosis Control: Proceedings of a Meeting of the EC Experts' Group, Bad Homburg, Germany, 15–17 October 1986. Rotterdam, Germany: A.A. Balkema, RotterdamGoogle Scholar
Bracey, S., Fischer, F. 1989. Initial results of the field treatment of honey bee colonies infested with Varroa jacobsoni using formic acid in hot climates. American Bee Journal 129: 735–7Google Scholar
Bush, A.O., Lafferty, K.D., Lotz, J.M., Shostak, A.W. 1997. Parasitology meets ecology on its own terms: Margolis et al. Revisited. Journal of Parasitology 83: 575–83CrossRefGoogle Scholar
Calatayud, F., Verdú, M.J. 1993. Hive debris counts in honeybee colonies: a method to estimate the size of small populations and rate of growth of the mite Varroa jacobsoni Oud. (Mesostigmatia: Varroidae). Experimental and Applied Acarology 17: 889–94CrossRefGoogle Scholar
Calatayud, F., Verdú, M.J. 1994. Survival of the mite Varroa jacobsoni Oud. (Mesostigmatia: Varroidae) in broodless colonies of the honey bee Apis mellifera L. Experimental and Applied Acarology 18: 603–12CrossRefGoogle Scholar
Calatayud, F., Verdú, M.J. 1995. Number of adult female mites Varroa jacobsoni Oud. on hive debris from honey bee colonies artificially infested to monitor mite population increase (Mesostigmatia: Varroidae). Experimental and Applied Acarology 19: 181–88CrossRefGoogle Scholar
Calderón, R.A., Oritz, R.A., Arce, H.G., van Veen, J.W., Quan, J. 2000. Effectiveness of formic acid on varroa mortality in capped brood cells of africanized honey bees. Journal of Apicultural Research 39: 177–9CrossRefGoogle Scholar
Crane, E. 1975. Honey. London, United Kingdom, HeinemannGoogle Scholar
Currie, R.W., Jay, S.C. 1991. Drifting behaviour of drone honey bees (Apis mellifera L.) in commercial apiary layouts. Journal of Apicultural Research 30: 61–8CrossRefGoogle Scholar
De Guzman, L.I., Rinderer, T.E., Beaman, L.D. 1993. Survival of Varroa jacobsoni Oud. (Acari: Varroidae) away from a living host. Experimental and Applied Acarology 17: 283–90CrossRefGoogle Scholar
DeJong, D., Gonçalves, L.S., Morse, A. 1984. Dependence on climate of the virulence of Varroa jacobsoni. Bee World 65: 117–21CrossRefGoogle Scholar
Delaplane, K.S., Hood, W.M. 1997. Effects of delayed acaricide treatment in honey bee colonies parasitized by Varroa jacobsoni and a late-season treatment threshold for the southeastern USA. Journal of Apicultural Research 36: 125–32CrossRefGoogle Scholar
Delaplane, K.S., Hood, W.M. 1999. Economic threshold for Varroa jacobsoni Oud. in the southeastern USA. Apidologie 30: 383–95CrossRefGoogle Scholar
Eguaras, M., Quiroga, S., Garcia, O. 1996. The control of Varroa jacobsoni (Acari: Gamasida) by means of organic acids. Apiacta 31: 51–4Google Scholar
Ellis, M.D., Baxendale, F.P. 1994. Comparison of formic acid sampling with other methods used to detect Varroa mites (Varroa jacobsoni Oud.) and mite distribution within colonies in Nebraska. Bee Science 3: 139–44Google Scholar
Ellis, M., Nelson, R., Simonds, C. 1988. A comparison of the fluvalinate and ether roll methods of sampling for varroa mites in honey bee colonies. American Bee Journal 128: 262–3Google Scholar
Ferrer-Dufol, M., Martinez-Viñuales, A.I., Sanchez-Acedo, C. 1991. Comparative tests of fluvalinate and flumethrin to control Varroa jacobsoni Oudemans. Journal of Apicultural Research 30: 103–6CrossRefGoogle Scholar
Ferrer-Dufol, M., Moreno-Manera, C., Martínez-Viñuales, A.I., Sánchez-Acedo, C., Gracia-Salinas, M.J. 1995. Field trials of treatments against Varroa jacobsoni using fluvalinate and flumethrin strips in honey bee colonies containing sealed brood. Journal of Apicultural Research 34: 147–52CrossRefGoogle Scholar
Fries, I. 1989. Short-interval treatments with formic acid for control of Varroa jacobsoni in honey bee (Apis mellifera) colonies in cold climates. Swedish Journal of Agricultural Research 19: 213–6Google Scholar
Fries, I. 1991. Treatment of sealed honey bee brood with formic acid for control of Varroa jacobsoni. American Bee Journal 131: 313–4Google Scholar
Fries, I., Aarhus, A., Hansen, H., Korpela, S. 1991 a. Development of early infestations by the mite Varroa jacobsoni in honey-bee (Apis mellifera) colonies in cold climates. Experimental and Applied Acarology 11: 205–14CrossRefGoogle Scholar
Fries, I., Aarhus, A., Hansen, H., Korpela, S. 1991 b. Comparison of diagnostic method for detection of low infestation levels of Varroa jacobsoni in honey-bee (Apis mellifera) colonies. Experimental and Applied Acarology 11: 279–87CrossRefGoogle Scholar
Fries, I., Camazine, S., Sneyd, J. 1994. Population dynamics of Varroa jacobsoni: a model and a review. Bee World 75: 528CrossRefGoogle Scholar
Glinski, Z., Jarosz, J. 1992. Varroa jacobsoni as a carrier of bacterial infections to a recipient bee host. Apidologie 23: 2531CrossRefGoogle Scholar
Greatti, M., Milani, N., Nazzi, F. 1992. Reinfestation of an acaricide-treated apiary by Varroa jacobsoni Oud. Experimental and Applied Acarology 16: 279–86CrossRefGoogle Scholar
Harris, J.L. 1980. A population model and its application to the study of honey bees. MSc thesis, University of Manitoba, WinnipegGoogle Scholar
Hergert, G. 1996. Status of the industry. pp 813in Currie, R.W. (Ed), Proceedings of the 6th National Research Planning Workshop: Honey Bee and Pollination Research, Ottawa, Ontario, 17 January 1996. Ottawa, Ontario: Canadian Association of Professional ApiculturalistsGoogle Scholar
Imdorf, A., Kilchenmann, V., Maquelin, C. 1990. Optimale. Ameisensäureanwendung. Schweizerische Bienen- Zeitung 113: 378–85. Aarau, Switzerland: Sauerlaender AGGoogle Scholar
Jay, S.C., Dixon, D. 1988. Drifting behaviour and honey production of honeybee colonies maintained on pallets. Journal of Apicultural Research 27: 213–8CrossRefGoogle Scholar
Korpela, S., Aarhus, A., Fries, I., Hansen, H. 1992. Varroa jacobsoni Oud. in cold climates: population growth, winter mortality and influence on the survival of honey bee colonies. Journal of Apicultural Research 31: 157–64CrossRefGoogle Scholar
Lodesani, M., Pellacani, A., Bergomi, S., Carpana, E., Rabitti, T., Lasagni, P. 1992. Residue determination for some products used against Varroa infestation in bees. Apidologie 23: 257–72CrossRefGoogle Scholar
Lodesani, M., Colombo, M., Spreafico, M. 1995. Ineffectiveness of Apistan® treatment against the mite Varroa jacobsoni Oud. in several districts of Lombardy (Italy). Apidologie 26: 6772CrossRefGoogle Scholar
Morse, R. 1995. On Varroa mites. Bee Culture 123: 269–70Google Scholar
Moosbeckhofer, R., Derakhshifar, I. 1992. Comparison of the effectiveness of Perizin, Folbex VA and formic acid treatments for controlling Varroa jacobsoni in honey bee colony nuclei. Apidologie 23: 523–31CrossRefGoogle Scholar
Moosbeckhofer, R., Kohlich, A. 1990. Nachwirkung von Apistan® nach der Entfernung der Streifen. Bienenvater 111: 39. Vienna, Austria: Oesterreichischer ImkerbundGoogle Scholar
Pest Management Regulatory Agency. 1994. Proposed scheduling of 65 percent formic acid for the detection and control of honey bee mites. Submission Management and Information Division, Pest Management Regulatory Agency, Government of Canada. Note to CAPCO C94-05, 30 March 1994Google Scholar
Ritter, W. 1981. Varroa disease of the honeybee Apis mellifera. Bee World 62: 141–53CrossRefGoogle Scholar
Sakofski, F., Koeniger, N., Fuchs, S. 1990. Seasonality of honey bee colony invasion by Varroa jacobsoni Oud. Apidologie 21: 547–50CrossRefGoogle Scholar
Schneider, P. 1987. The influence of Varroa infestation during pupal development on the flight activity of the worker honey bees. Apidologie 18: 366–8Google Scholar
Smirnov, A.M. 1978. Research results obtained in USSR concerning aetiology, pathogenesis, epizootiology, diagnosis and control of Varroa disease in bees. Apiacta 13: 149–62Google Scholar
Wilson, W.T., Collins, A.M. 1993. Failure of formic acid to control Varroa jacobsoni in a hot climate. American Bee Journal 130: 871Google Scholar