Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-05T14:59:47.617Z Has data issue: false hasContentIssue false

Temporal and geographical distribution patterns of cabbage seedpod weevil (Coleoptera: Curculionidae) in canola

Published online by Cambridge University Press:  31 May 2012

L.M. Dosdall*
Affiliation:
Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Agriculture/Forestry Centre, Edmonton, Alberta, Canada T6G 2P5
R.M. Weiss
Affiliation:
Saskatoon Research Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, Saskatchewan, Canada S7N 0X2
O. Olfert
Affiliation:
Saskatoon Research Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, Saskatchewan, Canada S7N 0X2
H.A. Cárcamo
Affiliation:
Lethbridge Research Centre, Agriculture and Agri-Food Canada, PO Box 3000, Lethbridge, Alberta, Canada T1J 4B1
*
1 Corresponding author (e-mail: [email protected]).

Abstract

The cabbage seedpod weevil, Ceutorhynchus obstrictus (Marsham), was discovered infesting canola [Brassica napus L. and Brassica rapa L. (Brassicaceae)] in southern Alberta in 1995, and by 1999 its populations had reached outbreak densities. The weevil has dispersed rapidly through cropland in the southern prairies, prompting this study to assess its potential for establishment in Canada's primary region of canola production in the Moist Mixed Grassland and Aspen Parkland ecoregions. In this study, both short- (24 h) and long-term (4 years) distribution patterns of cabbage seedpod weevil were examined, and these data were combined with previously published ecological findings and meteorological data in CLIMEX™ software to predict regions of western Canada where economically important infestations are likely to occur. Adult temporal distributions over 24 h on canola in bud and flower remained restricted primarily to the inflorescence rather than on stems and leaves regardless of time of day. Surveys conducted in commercial canola fields from 1997 to 2000 recorded rapid dispersal of the species to the north and east from the region of southern Alberta where it was initially found. Dispersal occurred at a rate of approximately 55 km/year, and in 2000 C. obstrictus populations were found in Saskatchewan for the first time. The CLIMEX™ model predicts that the distribution of C. obstrictus will eventually encompass the entire region of canola production in western Canada.

Résumé

Le charançon de la graine du chou, Ceutorhynchus obstrictus (Marsham), a été découvert dans les cultures de colza [Brassica napus L. et Brassica rapa L. (Brassicaceae)] du sud de l'Alberta en 1995 et, déjà en 1999, les populations avaient atteint des proportions épidémiques. Le charançon s'est répandu rapidement dans les terres cultivées du sud des Prairies, ce qui a donné le coup d'envoi à cette étude pour évaluer la probabilité de son établissement dans la principale zone de production canadienne de colza, dans les écorégions des prairies humides mixtes et des tremblaies-parcs. Au cours de notre étude, les patterns de répartition à court terme (24 h) et à long terme (4 ans) du charançon de la graine du chou ont été examinés et ces données ont été combinées à des données écologiques déjà publiées et à des données météorologiques du logiciel CLIMEX™ pour permettre de prédire quelles régions de l'ouest du Canada sont le plus susceptibles de subir des infestations d'importance économique. Les répartitions temporelles des adultes au cours de périodes de 24 h sur le colza, dans les bourgeons et dans les fleurs, étaient restreintes aux inflorescences et ne s'étendaient ni aux tiges, ni aux feuilles, indépendamment de l'heure de la journée. Des inventaires de champs commerciaux de colza de 1997 à 2000 ont mis en lumière la dispersion rapide de l'espèce de la région sud de l'Alberta, où elle est d'abord apparue, vers le nord et vers l'est. La dispersion s'est faite à raison d'environ 55 km/année, et en 2000, des populations de C. obstrictus ont été trouvées pour la première fois en Saskatchewan. Le modèle CLIMEX™ prédit que la répartition de C. obstrictus couvrira éventuellement toute la région productrice de colza de l'ouest du Canada.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baker, W.W. 1936. Notes on a European weevil, Ceutorhynchus assimilis Payk., recently found in the state of Washington. The Canadian Entomologist 68: 191–3Google Scholar
Bonnemaison, L. 1957. Le charançon des siliques (Ceutorhynchus assimilis Payk.) biologie et méthode de lutte. Annales des Epiphytes 4: 387543Google Scholar
Brodeur, J., Leclerc, L-A, Fournier, M., Roy, M. 2001. Cabbage seedpod weevil (Coleoptera: Curculionidae): a new pest of canola in northeastern North America. The Canadian Entomologist 133: 709–11Google Scholar
Budd, A.C., Best, K.F. 1969. Wild plants of the Canadian Prairies. Canada Department of Agriculture Research Branch Publication 983Google Scholar
Buntin, G.D., McCaffrey, J.P., Raymer, P.L., Romero, J. 1995. Quality and germination of rapeseed and canola seed damaged by adult cabbage seedpod weevil, Ceutorhynchus assimilis Paykull (Coleoptera: Curculionidae). Canadian Journal of Plant Science 75: 539–41CrossRefGoogle Scholar
Byfield, T. (Editor). 1984. The atlas of Alberta. Edmonton, Alberta: Interwest Publications LtdGoogle Scholar
Canola Council of Canada. 2001. Canola. Canola Council of Canada Publication 6500Google Scholar
Cárcamo, H.A., Dosdall, L., Dolinski, M., Olfert, O., Byers, J.R. 2001. The cabbage seedpod weevil, Ceutorhynchus obstrictus (Coleoptera: Curculionidae)—a review. Journal of the Entomological Society of British Columbia. 98: 201–10Google Scholar
Carlson, E.C., Lange, W.H. Jr., Sciaroni, R.H. 1951. Distribution and control of the cabbage seedpod weevil in California. Journal of Economic Entomology 44: 958–66Google Scholar
Dent, D. 2000. Insect pest management. 2nd edition. Wallingford, Oxon, United Kingdom: CABI PublishingGoogle Scholar
Dmoch, J. 1965. The dynamics of a population of the cabbage seedpod weevil (Ceutorhynchus assimilis Payk.) and the development of winter rape. Part I. Ekologia Polska Seria A 13: 249–87Google Scholar
Dosdall, L.M., Dolinski, M.G. 2001. Biology and control of the cabbage seedpod weevil, a new pest of canola in Alberta. Alberta Agriculture, Food and Rural Development Technical ReportGoogle Scholar
Dosdall, L.M., Moisey, D., Cárcamo, H., Dunn, R. 2001. Cabbage seedpod weevil factsheet. Alberta Agriculture, Food and Rural Development Agdex 622–21Google Scholar
Frankton, C., Mulligan, G.A. 1970. Weeds of Canada. Canada Department of Agriculture Publication 948Google Scholar
Hanson, A.J., Carlson, E.C., Breakey, E.P., Webster, R.L. 1948. Biology of the cabbage seedpod weevil in northwestern Washington. State College of Washington Agricultural Experiment Station Bulletin 498. Pullman, Washington: State College of WashingtonGoogle Scholar
Harmon, B.L., McCaffrey, J.P. 1997. Parasitism of adult Ceutorhynchus assimilis (Coleoptera: Curculionidae) by Microctonus melanopus (Hymenoptera: Braconidae) in northern Idaho and eastern Washington. Journal of Agricultural Entomology 14: 55–9Google Scholar
Harper, F.R., Berkenkamp, B. 1975. Revised growth-stage key for Brassica campestris and B. napus. Canadian Journal of Plant Science 55: 657–8Google Scholar
Herting, B. 1973. A catalogue of parasites and predators of terrestrial arthropods. Section A. Host or prey/enemy. Volume III. Coleoptera and Strepsiptera. Wallingford, Oxon, United Kingdom: Commonwealth Agriculture BureauGoogle Scholar
Hoffman, A. 1954. Coleopteres Curculionides: Ceutorhynchus assimilis Paykull. Faune de France 59: 994–7Google Scholar
Kjær-Pedersen, C. 1992. Flight behaviour of the cabbage seedpod weevil. Entomologia Experimentalis et Applicata 62: 61–6Google Scholar
Kozlowski, M.W., Lux, S., Dmoch, J. 1983. Oviposition behaviour and pod marking in the cabbage seed weevil, Ceutorhynchus assimilis. Entomologia Experimentalis et Applicata 34: 277–82CrossRefGoogle Scholar
Maywald, G.F., Sutherst, R.W. 1987. Ecological models I. Assessing climatic favourability with CLIMEX. pp 6871in Sutherst, R.W. (Ed), Ticks and tick-borne diseases. ACIAR Proceedings 17: 68–71Google Scholar
McCaffrey, J.P. 1992. Review of US canola pest complex: cabbage seedpod weevil. pp 140–3 in Proceedings of the 1992 US Canola Conference, Washington, DC, 5–6 March 1992. Memphis, Tennessee: Ameri-Can Pedigree Seed CoGoogle Scholar
McLeod, J.H. 1962. Cabbage seedpod weevil—Ceutorhynchus assimilis (Payk.) Curculionidae. pp 56in McLeod, J.H., McGugan, B.M., Coppel, H.C. (Eds), A review of the biological control attempts against insects and weeds in Canada. Farnham Royal, Bucks, England: Commonwealth Agricultural Bureaux (CAB)Google Scholar
Moss, E.H. 1959. Flora of Alberta. Toronto, Ontario: University of Toronto PressGoogle Scholar
Mudd, A., Ferguson, A.W., Blight, M.M., Williams, I.H., Scubla, P., Solinas, M. 1997. Extraction, isolation, and composition of oviposition-deterring secretion of cabbage seed weevil Ceutorhynchus assimilis. Journal of Chemical Ecology 23: 2227–40CrossRefGoogle Scholar
Ni, X.Z., McCaffrey, J.P., Stoltz, R.L., Harmon, B.L. 1990. Effects of postdiapause adult diet and temperature on oogenesis of the cabbage seedpod weevil (Coleoptera: Curculionidae). Journal of Economic Entomology 83: 2246–51Google Scholar
Olfert, O., Chapco, W. 2001. Analysis of historical surveys and genetic diversity of grasshopper populations to assess risk. Integrated Management of Crop Land Pests – Final Technical Report for Canada/Saskatchewan Agri-Food Innovation Fund. [Available from Saskatoon Research Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, Saskatchewan, Canada S7N 0X2]Google Scholar
SAS Institute Inc. 1990. SAS system for personal computers, release 6.04. Cary, North Carolina: SAS Institute IncGoogle Scholar
Sutherst, R.W. 1991. Predicting the survival of immigrant insect pests in new environments. Crop Protection 10: 331–3Google Scholar
Sutherst, R.W., Maywald, G.F. 1985. A computerized system for matching climates in ecology. Agriculture Ecosystems and Environment 13: 281–99Google Scholar
Sutherst, R.W., Maywald, G.F., Yonow, T., Stevens, P.M. 1988. CLIMEX for Windows, version 1.1. Brisbane, Australia: Co-operative Research Centre for Tropical Pest ManagementGoogle Scholar
Venette, R.C., Carey, J.R. 1998. Invasion biology: rethinking our response to alien species. California Agriculture 52: 13–7Google Scholar
Venette, R.C., Hutchison, W.D. 1999. Assessing the risk of establishment by pink bollworm (Lepidoptera: Gelechiidae) in the southeastern United States. Environmental Entomology 28: 445–55Google Scholar
Williamson, M. 1996. Biological invasions. New York: Chapman and HallGoogle Scholar
Worner, S.P. 1988. Ecoclimatic assessment of potential establishment of exotic pests. Journal of Economic Entomology 81: 973–83Google Scholar