Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T16:48:19.249Z Has data issue: false hasContentIssue false

SURVIVAL OF SPRING AEDES SPP. MOSQUITO (DIPTERA: CULICIDAE) LARVAE IN ICE-COVERED POOLS

Published online by Cambridge University Press:  31 May 2012

A. R. Westwood
Affiliation:
Department of Environmental Biology, University of Guelph, Guelph, Ontario N1G 2W1
G. A. Surgeoner
Affiliation:
Department of Environmental Biology, University of Guelph, Guelph, Ontario N1G 2W1
B. V. Helson
Affiliation:
Department of Environmental Biology, University of Guelph, Guelph, Ontario N1G 2W1

Abstract

First instar larvae of five spring Aedes spp. mosquitoes survived for at least 25 days beneath moderately thick ice (4.5 cm) in an open field habitat. While survival in the open field was in excess of 85%, larvae inhabiting a nearby deciduous woodland pool suffered 100% mortality within 25 days. Dissolved oxygen levels in the woodland pool fell drastically over the period of ice-cover indicating a trend toward an anaerobic condition which likely contributed to larval mortality.

Résumé

Les larves de premier stade de 5 espèces printannières d'Aedes ont survécu pendant au moins 25 jours sous une couche de glace d'épaisseur moyenne (4.5 cm), dans un habitat situé en plein champ. Alors que la survie était supérieure à 85%, des larves vivant dans un étang de boisé décidu situé à proximité ont subi 100% de mortalité après 25 jours. Les concentrations en oxygène dissout dans l'étang situé dans le boisé ont chuté de façon très marquée durant la période de recouvrement par le glace, indiquant une tendance vers l'anaérobie laquelle a sans doute contribué à la mortalité larvaire.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bates, M. 1949. The Natural History of Mosquitoes. Macmillan, N.Y.379 pp.Google Scholar
Clements, A. N. 1963. The Physiology of Mosquitoes. Pergamon Press, Macmillan, N.Y.393 pp.Google Scholar
Gjullin, C. M., Sailer, R. I., Stone, A., and Travis, B. V.. 1961. The mosquitoes of Alaska. U.S. Dep. Agric. Res. Handbk 182. 98 pp. Washington, D.C.Google Scholar
Horsfall, W. R. 1974. Effect of simulated seasonal conditions on hatching of a univoltine mosquito. Ann. ent. Soc. Am. 67: 991992.Google Scholar
Horsfall, W. R. and Fowler, H. W. Jr., 1961. Eggs of floodwater mosquitoes. VIII. Effect of serial temperatures on conditioning of eggs of Aedes stimulans (Diptera: Culicidae). Ann. ent. Soc. Am. 54: 664667.CrossRefGoogle Scholar
James, H. G. 1962. Winter mortality in larvae of Aedes trichurus (Dyar). Mosquito News 22: 123125.Google Scholar
Judson, C. L. 1960. The physiology of hatching of aedine mosquito eggs: Hatching stimulus. Ann. ent. Soc. Am. 53: 688691.CrossRefGoogle Scholar
Kardatzke, J. T. 1977. Hatching of northern Aedes (Diptera: Culicidae) at low temperature. Ann. ent. Soc. Am. 70: 663664.Google Scholar
Kardatzke, J. T. 1979. Hatching of eggs of snow-melt Aedes. Ann. ent. Soc. Am. 72: 559562.CrossRefGoogle Scholar
Kardatzke, J. T. 1981. Hatching states of eggs of snow-melt Aedes. Mosquito News 41: 502508.Google Scholar
Reiter, P. 1978. The influence of dissolved oxygen on the survival of submerged mosquito larvae. Mosquito News 38: 334337.Google Scholar
Roberts, D. R. and Scanlon, J. E.. 1974. An area sampler for collecting mosquito larvae in temporary woodland and field pools. Mosquito News 34: 467468.Google Scholar
Welch, H. E. and James, H. G.. 1960. The Belleville trap for quantitative samples of mosquito larvae. Mosquito News 30: 2326.Google Scholar
Wigglesworth, V. B. 1933. The function of the anal gills of mosquito larvae. J. exp. Biol. 10: 1626.Google Scholar