Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-24T16:31:10.108Z Has data issue: false hasContentIssue false

Survival of Sitodiplosis mosellana (Diptera: Cecidomyiidae) on wheat (Poaceae) with antibiosis resistance: implication for the evolution of virulence1

Published online by Cambridge University Press:  02 April 2012

M.A.H. Smith*
Affiliation:
Cereal Research Centre, Agriculture and Agri-Food Canada, 195 Dafoe Road, Winnipeg, Manitoba, Canada R3T 2M9
I.L. Wise
Affiliation:
Cereal Research Centre, Agriculture and Agri-Food Canada, 195 Dafoe Road, Winnipeg, Manitoba, Canada R3T 2M9
R.J. Lamb
Affiliation:
Cereal Research Centre, Agriculture and Agri-Food Canada, 195 Dafoe Road, Winnipeg, Manitoba, Canada R3T 2M9
*
2Corresponding author (e-mail: [email protected]).

Abstract

Small numbers of larval wheat midge, Sitodiplosis mosellana Géhin, survived and matured in each of five field seasons in a plot of spring wheat carrying the Sm1 gene for antibiosis resistance against this insect. Wheat midge developing on resistant wheat had higher survival in the laboratory than in the field, but survival was always very low compared with that of larvae developing on susceptible wheat. The mass of these larvae and their survival during diapause were approximately half those of larvae developing on susceptible wheat in both the laboratory and the field. The survival of some wheat midge larvae on resistant wheat, and their reduced mass, is consistent with the hypothesis that a virulence allele allowing adaptation to Sm1 is present in the population. Assuming this to be the case, the frequency of the allele in the population was estimated to be between 0.8 × 10−4 and 1.6 × 10−2, if surviving larvae are heterozygous for the allele. Although rare, a virulence allele occurring at this frequency would likely allow the wheat midge to overcome the resistance gene Sm1 once resistant wheat is grown over a wide area.

Résumé

De petits nombres de larves de la cécidomyie du blé, Sitodiplosis mosellana Géhin, ont survécu et atteint la maturité à chacune de cinq saisons de terrain dans un champ de blé de printemps porteur du gène Sm1 de résistance antibiotique contre ce ravageur. Les cécidomyies du blé qui se développent sur du blé résistant ont un taux de survie plus élevé en laboratoire que dans le champ, mais la survie est toujours très faible par rapport à celle de larves qui se développent sur du blé vulnérable. La masse de ces larves et leur survie à la diapause correspondent à environ la moitié de celles de larves qui se développent sur du blé vulnérable, tant au laboratoire que dans le champ. La survie de quelques larves de la cécidomyie du blé sur du blé résistant et leur masse réduite sont compatibles avec l'hypothèse selon laquelle il existe dans la population un allèle qui permet une adaptation à Sm1. En présumant que c'est le cas, nous estimons la fréquence de cet allèle dans la population à entre 0,8 × 10−4 et 1,6 × 10−2, si les larves survivantes possèdent le gène à l'état hétérozygote. Malgré sa rareté, un allèle de virulence qui existe à cette fréquence permettrait vraisemblablement à la cécidomyie du blé de surmonter le gène de résistance Sm1 une fois que le blé résistant sera cultivé sur une surface géographique étendue.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

Contribution No. 1929 of the Cereal Research Centre, Winnipeg.

References

Bentur, J.S., Andow, D.A., Cohen, M.B., Romena, A.M., and Gould, F. 2000. Frequency of alleles conferring resistance to a Bacillus thuringiensis toxin in a Philippine population of Scirpophaga incertulas (Lepidoptera: Pyralidae). Journal of Economic Entomology, 93: 15151521.CrossRefGoogle Scholar
Ding, H., and Lamb, R.J. 1999. Oviposition and larval establishment of Sitodiplosis mosellana (Diptera: Cecidomyiidae) on wheat (Gramineae) at different growth stages. The Canadian Entomologist, 131: 475481.CrossRefGoogle Scholar
Ding, H., Lamb, R.J., and Ames, N. 2000. Inducible production of phenolic acids in wheat with antibiotic resistance to Sitodiplosis mosellana. Journal of Chemical Ecology, 26: 969985.CrossRefGoogle Scholar
El Bouhssini, M., Hatchett, J.H., and Wilde, G.E. 1998. Survival of Hessian fly (Diptera: Cecidomyiidae) larvae on wheat cultivars carrying different genes for antibiosis. Journal of Agricultural Entomology, 15: 183193.Google Scholar
Elliott, R.H. 1988. Factors influencing the efficacy and economic returns of aerial sprays against the wheat midge, Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae). The Canadian Entomologist, 120: 941954.CrossRefGoogle Scholar
Foster, J.E., Ohm, H.W., Patterson, F.L., and Taylor, P.L. 1991. Effectiveness of deploying single gene resistances in wheat for controlling damage by the Hessian fly (Diptera: Cecidomyiidae). Environmental Entomology, 20: 964969.CrossRefGoogle Scholar
Gallun, R.L. 1978. Genetics of biotypes B and C of the Hessian fly. Annals of the Entomological Society of America, 71: 481486.CrossRefGoogle Scholar
Gould, F. 1986. Simulation models for predicting durability of insect-resistant germ plasm: Hessian fly (Diptera: Cecidomyiidae)-resistant winter wheat. Environmental Entomology, 15: 1123.CrossRefGoogle Scholar
Gould, F. 1998. Sustainability of transgenic insecticidal cultivars: integrating pest genetics and ecology. Annual Review of Entomology, 43: 701726.CrossRefGoogle ScholarPubMed
Gould, F., Anderson, A., Jones, A., Sumerford, D., Heckel, D.G., Lopez, J., Micinski, S., Leonard, R., and Laster, M. 1997. Initial frequency of alleles for resistance to Bacillus thuringiensis toxins in field populations of Heliothis virescens. Proceedings of the National Academy of Sciences of the United States of America. 94: 35193523.CrossRefGoogle ScholarPubMed
Hartl, D.L. 1988. A primer of population genetics. 2nd ed. Sinauer Associates, Inc., Sunderland, Massachusetts.Google Scholar
Harris, M.O., Stuart, J.J., Mohan, M., Nair, S., Lamb, R.J., and Rohfritsch, O. 2003. Grasses and gall midges: plant defense and insect adaptation. Annual Review of Entomology, 48: 549577.CrossRefGoogle ScholarPubMed
Hucl, P., and Matus-Cádiz, M. 2001. Isolation distances for minimizing out-crossing in spring wheat. Crop Science, 41: 13481351.CrossRefGoogle Scholar
Lamb, R.J., Wise, I.L., Olfert, O.O., Gavloski, J., and Barker, P.S. 1999. Distribution and seasonal abundance of Sitodiplosis mosellana (Diptera: Cecidomyiidae) in spring wheat. The Canadian Entomologist, 131: 387397.CrossRefGoogle Scholar
Lamb, R.J., McKenzie, R.I.H., Wise, I.L., Barker, P.S., Smith, M.A.H., and Olfert, O.O. 2000 a. Resistance to Sitodiplosis mosellana (Diptera: Cecidomyiidae) in spring wheat (Gramineae). The Canadian Entomologist, 132: 591605.CrossRefGoogle Scholar
Lamb, R.J., Tucker, J.R., Wise, I.L., and Smith, M.A.H. 2000 b. Trophic interaction between Sitodiplosis mosellana (Diptera: Cecidomyiidae) and spring wheat: implications for yield and seed quality. The Canadian Entomologist, 132: 607625.CrossRefGoogle Scholar
McKenzie, R.I.H., Lamb, R.J., Aung, T., Wise, I.L., Barker, P., and Olfert, O.O. 2002. Inheritance of resistance to wheat midge, Sitodiplosis mosellana, in spring wheat. Plant Breeding, 121: 383388.CrossRefGoogle Scholar
Sardesai, N., Rajyashri, K.R., Behura, S.K., Nair, S., and Mohan, M. 2001. Genetic, physiological and molecular interactions of rice and its major dipteran pest, gall midge. Plant Cell, Tissue and Organ Culture, 64: 115131.CrossRefGoogle Scholar
SAS Institute Inc. 1999. SAS/STAT user's guide. Version 8. SAS Institute Inc., Cary, North Carolina.Google Scholar
Smith, M.A.H., and Lamb, R.J. 2004. Causes of variation in body size and consequences for the life history of Sitodiplosis mosellana (Diptera: Cecidomyiidae). The Canadian Entomologist, 136: 839850.CrossRefGoogle Scholar
Smith, M.A.H., Lamb, R.J., Wise, I.L., and Olfert, O.O. 2004 a. An interspersed refuge for Sitodiplosis mosellana (Diptera: Cecidomyiidae) to protect crop resistance and a biocontrol agent Macroglenes penetrans (Hymenoptera: Pteromalidae) in wheat (Poaceae). Bulletin of Entomological Research, 94: 179188.CrossRefGoogle Scholar
Smith, M.A.H., Wise, I.L., and Lamb, R.J. 2004 b. Sex ratios of Sitodiplosis mosellana (Diptera: Cecidomyiidae): implications for pest management in wheat (Poaceae). Bulletin of Entomological Research, 94: 569575.CrossRefGoogle ScholarPubMed
Wise, I.L., and Lamb, R.J. 2004. Diapause and emergence of Sitodiplosis mosellana (Diptera: Cecidomyiidae) and its parasitoid Macroglenes penetrans (Hymenoptera: Pteromalidae). The Canadian Entomologist, 136: 7790.CrossRefGoogle Scholar
Zadoks, J.C., Chang, T.T., and Konzak, C.F. 1974. A decimal code for the growth stages of cereals. Weed Research, 14: 415421.CrossRefGoogle Scholar