Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-28T08:13:09.407Z Has data issue: false hasContentIssue false

SURVIVAL OF PUPAE OF HELIOTHIS VIRESCENS AND HELIOTHIS ZEA (LEPIDOPTERA: NOCTUIDAE) AT LOW TEMPERATURES1

Published online by Cambridge University Press:  31 May 2012

Joseph E. Eger Jr.
Affiliation:
Texas A&M University, College Station, Texas 77843
John A. Witz
Affiliation:
Texas A&M University, College Station, Texas 77843
Albert W. Hartstack Jr.
Affiliation:
Texas A&M University, College Station, Texas 77843
Winfield L. Sterling
Affiliation:
Texas A&M University, College Station, Texas 77843

Abstract

Mortality of diapausing and non-diapausing pupae of Heliothis virescens (Fabricius) and H. zea (Boddie) at low temperatures was assessed in the laboratory. Comparison of the exposure time necessary to induce 50% mortality (LT50) indicated that survival of diapausing pupae was significantly higher than that of non-diapausing pupae. Similar comparisons showed no consistent significant differences in mortality of pupae from different geographic locations within Texas or in pupae preconditioned in several different ways. One exception was the response of pupae of H. virescens preconditioned to varying temperatures. This type of preconditioning appeared to increase the cold-hardiness of pupae at subfreezing temperatures. Contact moisture significantly decreased LT50 values of pupae of both species at sub-zero temperatures. Predictive models for low temperature mortality were developed for dry, diapausing pupae.

Résumé

La mortalité de chrysalides diapausantes et non-diapausantes d'Heliothis virescens (Fabricius) et de H. zea (Boddie) a été étudiée à basse température au laboratoire. La comparaison du temps d'exposition pouvant causer 50% de mortalité (TL50) a montré que la survie de chrysalides diapausantes est significativement plus élevée que celle de chrysalides non-diapausantes. Des comparaisons semblables n'ont pu montrer de différences significatives cohérentes entre différentes localités géographiques du Texas, ou pour des chrysalides ayant été exposées à différents types de préconditionnement. La réponse de chrysalides d'H. virescens préconditionnées à des températures qui variaient a fait exception. Ce préconditionnement a apparemment eu pour effet d'augmenter la résistance au froid des chrysalides aux températures sous le point de congélation. L'humidité de contact a diminué significativement les valeurs du TL50 des chrysalides des 2 espèces à des températures sous-zéro. Des modèles prévisionnels de la mortalité à basse température ont été développés pour des chrysalides diapausantes au sec.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, W. S. 1925. A method of computing the effectiveness of an insecticide. J. econ. Ent. 18: 265267.CrossRefGoogle Scholar
Asahina, E. 1969. Frost resistance in insects. Advances Insect Physiol. 6: 149.Google Scholar
Barber, G. W. and Dicke, F. F.. 1939. Effect of temperature and moisture on overwintering pupae of the corn earworm in the northeastern states. J. agric. Res. 59: 711723.Google Scholar
Baust, J. G. and Miller, L. K.. 1972. Influence of low temperature acclimation on cold hardiness in the beetle, Pterostichus brevicornis. J. Insect Physiol. 18: 19351947.CrossRefGoogle ScholarPubMed
Blanchard, R. A. 1942. Hibernation of the corn earworm in the central and northeastern parts of the United States. U.S. Dep. Agric. Tech. Bull. 838. 14 pp.Google Scholar
Burton, R. L. 1969. Mass rearing the corn earworm in the laboratory. U.S. Dep. Agric. ARS 33-134. 8 pp.Google Scholar
Casagrande, R. A. and Haynes, D. L.. 1976. A predictive model for cereal leaf beetle mortality from sub-freezing temperatures. Environ. Ent. 5: 761769.CrossRefGoogle Scholar
Ditman, L. P., Weiland, G. S., and Guill, J. H.. 1940. The metabolism in the corn earworm. III. Weight, water and diapause. J. econ. Ent. 33: 282295.CrossRefGoogle Scholar
Ditman, L. P., Voght, G. B., and Smith, D. R.. 1943. Undercooling and freezing of insects. J. econ. Ent. 36: 304311.CrossRefGoogle Scholar
Green, G. W. 1962. Low winter temperatures and the European pine shoot moth, Rhyacionia buoliana (Schiff.) in Ontario. Can. Ent. 94: 314336.CrossRefGoogle Scholar
Hanec, W. and Beck, S. D.. 1960. Cold hardiness in the European corn borer, Pyrausta nubilalis (Hübn.). J. Insect Physiol. 5: 169180.CrossRefGoogle Scholar
Hartstack, A. W. Jr. et al. , 1976. MOTHZV-2: A computer simulation of Heliothis zea and Heliothis virescens population dynamics. Users manual. U.S. Dep. Agric. ARS-S-127. 55 pp.Google Scholar
Lopez, J. D. Jr.,, and Morrison, R. K.. 1980. Susceptibility of immature Trichogramma pretiosum to freezing and subfreezing temperatures. Environ. Ent. 9: 697700.CrossRefGoogle Scholar
Miller, F. M. 1967. Ecological factors affecting the type of burrow, rate of development, mortality, and eclosion of pupae of the bollworm, Heliothis zea (Boddie). Master's Thesis, Texas A&M University. 76 pp.Google Scholar
Morris, R. F. and Fulton, W. C.. 1970. Models for the development and survival of Hyphantria cunea in relation to temperature and humidity. Mem. ent. Soc. Can. 70. 60 pp.Google Scholar
Phillips, J. R. and Newsom, L. D.. 1966. Diapause in Heliothis zea and Heliothis virescens (Lepidoptera: Noctuidae). Ann. ent. Soc. Am. 59: 154159.CrossRefGoogle Scholar
Roach, S. H. and Adkisson, P. L.. 1971. Termination of pupal diapause in the bollworm. J. econ. Ent. 64: 10571060.CrossRefGoogle Scholar
Roberts, S. J., Armbrust, E. J., and Sell, D. K.. 1972. Supercooling points of several species of Lepidoptera found on soybeans. Environ. Ent. 1: 671672.CrossRefGoogle Scholar
Salt, R. W. 1950. Time as a factor in the freezing of undercooled insects. Can. J. Res. (D) 28: 285291.CrossRefGoogle Scholar
Salt, R. W. 1961. Principles of insect cold-hardiness. A. Rev. Ent. 6: 5574.CrossRefGoogle Scholar
Salt, R. W. 1966 a. Factors influencing nucleation in supercooled insects. Can. J. Zool. 44: 117133.CrossRefGoogle Scholar
Salt, R. W. 1966 b. Relation between time of freezing and temperature in supercooled larvae of Cephus cinctus Nort. Can. J. Zool. 44: 947952.CrossRefGoogle Scholar
Slosser, J. E., Phillips, J. R., Herzog, G. A., and Reynolds, C. R.. 1975. Overwinter survival and spring emergence of the bollworm in Arkansas. Environ. Ent. 4: 10151024.CrossRefGoogle Scholar
Snow, J. W. and Copeland, W. W.. 1971. Distribution and abundance of the corn earworm in the United States. U.S. Dep. Agric., Coop. econ. Insect Rep. 21: 7176.Google Scholar
Sullivan, C. R. 1965. Laboratory and field investigations on the ability of eggs of the European pine sawfly, Neodiprion sertifer (Geoffroy), to withstand low winter temperatures. Can. Ent. 97: 978993.CrossRefGoogle Scholar
Wellso, S. G. 1966. Factors governing the pupal diapause of the bollworm, Heliothis zea (Boddie) (Lepidoptera: Noctuidae). Ph.D. Diss., Texas A&M University. 121 pp.Google Scholar