Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-23T07:49:36.407Z Has data issue: false hasContentIssue false

Spiders (Arachnida: Araneae) in organic apple (Rosaceae) orchards in southeastern France

Published online by Cambridge University Press:  27 February 2020

Hazem Dib*
Affiliation:
Department of Plant Protection, Faculty of Agriculture, Tishreen University, Latakia, Syria Institut national de la recherche agronomique, Unité de recherches 1115 Plantes et Système de cultures Horticoles, Domaine St Paul, Site Agroparc, 84914 AvignonCedex 9, France
Myriam Siegwart
Affiliation:
Institut national de la recherche agronomique, Unité de recherches 1115 Plantes et Système de cultures Horticoles, Domaine St Paul, Site Agroparc, 84914 AvignonCedex 9, France
Yvan Capowiez
Affiliation:
Institut national de la recherche agronomique, Unité mixte de recherches 1114 Environnement Méditerranéen et Modélisation des Agro-Hydrosystèmes, Domaine St Paul, Site Agroparc, 84914 AvignonCedex 09, France
*
*Corresponding author. Email: [email protected]

Abstract

The role of spiders (Arachnida: Araneae) in biological control programmes has received less attention than that of insect natural enemies. The aim of this two-year study was to obtain descriptive data on spider spring field population structure and dynamics. The study was carried out in one insecticide-free and four organic apple orchards in southeastern France. Rolls and bands of corrugated cardboard near the ground and shoots infested with Dysaphis plantaginea (Passerini) (Hemiptera: Aphididae) in the tree canopy were used to sample spiders. Thirty-three spider species belonging to 14 families were identified from both sampling methods. Cheiracanthium mildei Koch (Araneae: Cheiracanthiidae) was clearly the predominant arboreal spider species in aphid-infested shoots (>57%). More than half of the spiders recorded in cardboard bands belonged to three species Drassodes pubescens (Thorell) (Araneae: Gnaphosidae), Pseudeuophrys erratica (Walckenaer) (Araneae: Salticidae), and Icius hamatus (Koch) (Araneae: Salticidae). Salticidae (39.9%) and Gnaphosidae (23.4%) families dominated significantly the spider assemblages observed in the cardboard rolls and were present on almost all sampling dates. However, in the two shelter types, the spider abundance curve clearly had a poly-modal shape. This may be due to the sequential arrival of some spider species or their dominance in a certain period of our study.

Type
Research Papers
Copyright
© 2020 Entomological Society of Canada

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Subject editor: Justin Renkema

References

Alzubik Belkair, S., Mazzia, C., Pasquet, A., and Capowiez, Y. 2018. Temporal activity of spiders and earwigs during winter in apple trees under a Mediterranean climate. Biocontrol Science and Technology, 28: 823836.CrossRefGoogle Scholar
Bajwa, W.I. and Aliniazee, M.T. 2001. Spider fauna in apple ecosystem of western Oregon and its field susceptibility to chemical and microbial insecticides. Journal of Economic Entomology, 94: 6875.CrossRefGoogle ScholarPubMed
Bogya, S., Markó, V., and Szinetár, C. 2000. Effect of pest management systems on foliage- and grass-dwelling spider communities in an apple orchard in Hungary. International Journal of Pest Management, 46: 241250.CrossRefGoogle Scholar
Brown, M.W. and Mathews, C.R. 2007. Conservation biological control of rosy apple aphid, Dysaphis plantaginea (Passerini), in eastern North America. Environmental Entomology, 36: 11311139.CrossRefGoogle Scholar
Cahenzli, F., Pfiffner, L., and Daniel, C. 2017. Reduced crop damage by self-regulation of aphids in an ecologically enriched, insecticide-free apple orchard. Agronomy for Sustainable Development, 37: article 65, 18.CrossRefGoogle Scholar
Cardenas, M., Ruano, F., Garcia, P., Pascual, F., and Campos, M. 2006. Impact of agricultural management on spider populations in the canopy of olive trees. Biological Control, 38: 188195.CrossRefGoogle Scholar
Dib, H., Sauphanor, B., and Capowiez, Y. 2010a. Effect of codling moth exclusion nets on the rosy apple aphid, Dysaphis plantaginea, and its control by natural enemies. Crop Protection, 29: 15021513.CrossRefGoogle Scholar
Dib, H., Sauphanor, B., and Capowiez, Y. 2016. Effect of management strategies on arthropod communities in the colonies of rosy apple aphid, Dysaphis plantaginea Passerini (Hemiptera: Aphididae) in south-eastern France. Agriculture, Ecosystems and Environment, 216: 203206.CrossRefGoogle Scholar
Dib, H., Sauphanor, B., and Capowiez, Y. 2017. Report on the life history traits of the generalist predator Forficula auricularia (Dermaptera: Forficulidae) in organic apple orchards in southeastern France. The Canadian Entomologist, 149: 5672.CrossRefGoogle Scholar
Dib, H., Simon, S., Sauphanor, B., and Capowiez, Y. 2010b. The role of natural enemies on the population dynamics of the rosy apple aphid, Dysaphis plantaginea Passerini (Hemiptera: Aphididae) in organic apple orchards in south-eastern France. Biological Control, 55: 97109.CrossRefGoogle Scholar
Fréchette, B., Cormier, D., Chouinard, G., Vanoosthuyse, F., and Lucas, E. 2008. Apple aphid, Aphis spp. (Hemiptera: Aphididae), and predator populations in an apple orchard at the non-bearing stage: the impact of ground cover and cultivar. European Journal of Entomology, 105: 521529.CrossRefGoogle Scholar
Greenstone, M.H. 1999. Spider predation: how and why we study it. Journal of Arachnology, 27: 333342.Google Scholar
Harwood, J.D., Sunderland, K.D., and Symondson, W.O.C. 2003. Web-location by linyphiid spiders: prey-specific aggregation and foraging strategies. Journal of Animal Ecology, 72: 745756.CrossRefGoogle Scholar
Holland, J.M., Oaten, H., Southway, S., and Moreby, S. 2008. The effectiveness of field margin enhancement for cereal aphid control by different natural enemy guilds. Biological Control, 47: 7176.CrossRefGoogle Scholar
Horton, D.R., Broers, D.A., Lewis, R.R., Granatstein, D., Zack, R.S., Unruh, T.R., et al. 2003. Effects of mowing frequency on densities of natural enemies in three Pacific Northwest pear orchards. Entomologia Experimentalis et Applicata, 106: 135145.CrossRefGoogle Scholar
Horton, D.R., Miliczky, E.R., Broers, D.A., Lewis, R.R., and Calkins, C.O. 2001. Numbers, diversity, and phenology of spiders (Araneae) overwintering in cardboard bands placed in pear and apple orchards of central Washington. Annals of the Entomological Society of America, 94: 405414.CrossRefGoogle Scholar
Jackson, R.R. and Pollard, S.D. 1996. Predatory behavior of jumping spiders. Annual Review of Entomology, 41: 287308.CrossRefGoogle ScholarPubMed
Jones, D. 1990. Guide des araignées et des opilions d’Europe. Delachaux et Niestlé, Neuchâtel-Paris, France.Google Scholar
Kremen, C., Colwell, R.K., Erwin, T.L., Murphy, D.D., Noss, R.F., and Sanjayan, M.A. 1993. Terrestrial arthropod assemblages: their use in conservation planning. Conservation Biology, 7: 796808.CrossRefGoogle Scholar
Marc, P. and Canard, A. 1997. Maintaining spider biodiversity in agroecosystems as a tool in pest control. Agriculture, Ecosystems and Environment, 62: 229235.CrossRefGoogle Scholar
Marc, P., Canard, A., and Ysnel, F. 1999. Spiders (Araneae) useful for pest limitation and bioindication. Agriculture, Ecosystems and Environment, 74: 229273.CrossRefGoogle Scholar
Markó, V., Blommers, L.H.M., Bogya, S., and Helsen, H. 2008. Kaolin particle films suppress many apple pests, disrupt natural enemies and promote woolly apple aphid. Journal of Applied Entomology, 132: 2635.CrossRefGoogle Scholar
Markó, V., Keresztes, B., Fountain, M.T., and Cross, J.V. 2009. Prey availability, pesticides and the abundance of orchard spider communities. Biological Control, 48: 115124.CrossRefGoogle Scholar
Marshall, S.D. and Rypstra, A.L. 1999. Patterns in the distribution of two wolf spiders (Araneae: Lycosidae) in two soybean agroecosystems. Environmental Entomology, 28: 10521059.CrossRefGoogle Scholar
Mathews, C.R., Bottrell, D.G., and Brown, M.W. 2004. Habitat manipulation of the apple orchard floor to increase ground-dwelling predators and predation of Cydia pomonella (L.) (Lepidoptera: Tortricidae). Biological Control, 30: 265273.CrossRefGoogle Scholar
Mazzia, C., Pasquet, A., Caro, G., Thénard, J., Cornic, J.-F., Hedde, M., and Capowiez, Y. 2015. The impact of management strategies in apple orchards on the structural and functional diversity of epigeal spiders. Ecotoxicology, 24: 616625.CrossRefGoogle ScholarPubMed
McLachlan, A.R.G. and Wratten, S.D. 2003. Abundance and species richness of field-margin and pasture spiders (Araneae) in Canterbury, New Zealand. New Zealand Journal of Zoology, 30: 5767.CrossRefGoogle Scholar
Miliczky, E.R., Calkins, C.O., and Horton, D.R. 2000. Spider abundance and diversity in apple orchards under three insect pest management programmes in Washington State, USA. Agricultural and Forest Entomology, 2: 203215.CrossRefGoogle Scholar
Miliczky, E.R. and Horton, D.R. 2005. Densities of beneficial arthropods within pear and apple orchards affected by distance from adjacent native habitat and association of natural enemies with extra-orchard host plants. Biological Control, 33: 249259.CrossRefGoogle Scholar
Miñarro, M., Hemptinne, J.-L., and Dapena, E. 2005. Colonization of apple orchards by predators of Dysaphis plantaginea: sequential arrival, response to prey abundance and consequences for biological control. BioControl, 50: 403414.CrossRefGoogle Scholar
Nentwig, W. 1983. The prey of webbuilding spiders compared with feeding experiments (Araneae: Araneidae, Linyphiidae, Pholcidae, Agelenidae). Oecologia, 56: 132139.CrossRefGoogle Scholar
Nentwig, W., Blick, T., Bosmans, R., Gloor, D., Hänggi, A., and Kropf, C. 2017. Araneae - spiders of Europe [online]. Available from www.araneae.nmbe.ch [accessed 13 January 2020].Google Scholar
Nyffeler, M., Sterling, W.L., and Dean, D.A. 1994. How spiders make a living. Environmental Entomology, 23: 13571367.CrossRefGoogle Scholar
Olszak, R.W., Luczak, J., Neimczyk, E., and Zajac, R. 1992. The spider community associated with apple trees under different pressure of pesticides. Ekologia Polska, 40: 265286.Google Scholar
Pasquet, A., Turpinier, N., Mazzia, C., and Capowiez, Y. 2016. Exposure to spinosad affects orb-web spider (Agalenatea redii) survival, web construction and prey capture under laboratory conditions. Journal of Pest Science, 89: 507515.CrossRefGoogle Scholar
Pekár, S. 1999. Foraging mode, a factor affecting the susceptibility of spiders (Araneae) to insecticide applications. Pesticide Science, 55: 10771082.3.0.CO;2-T>CrossRefGoogle Scholar
Pekár, S. and Kocourek, F. 2004. Spiders (Araneae) in the biological and integrated pest management of apple in the Czech Republic. Journal of Applied Entomology, 128: 561566.CrossRefGoogle Scholar
Pfiffner, L. and Luka, H. 2003. Effects of low-input farming systems on carabids and epigeal spiders - a paired farm approach. Basic and Applied Ecology, 4: 117127.CrossRefGoogle Scholar
Prendergast, J.R., Quinn, R.M., Lawton, J.H., Eversham, B.C., and Gibbons, D.W. 1993. Rare species, the coincidence of diversity hotspots and conservation strategies. Nature, 365: 335337.CrossRefGoogle Scholar
Prieto-Benitez, S. and Mendez, M. 2011. Effect of land management on the abundance and richness of spiders (Araneae): a meta-analysis. Biological Conservation, 144: 683691.CrossRefGoogle Scholar
Riechert, S.E. and Harp, J.M. 1987. Nutritional ecology of spiders. In Nutritional ecology of insects, mites, spiders and related invertebrates. Edited by Slansky, F. and Rodriguez, J.G.. Wiley, New York, New York, United States of America. Pp. 645672.Google Scholar
Riechert, S.E. and Lockley, T. 1984. Spiders as biological control agents. Annual Review of Entomology, 29: 299320.CrossRefGoogle Scholar
Romero, G.Q. and Vasconcellos-Neto, J. 2003. Natural history of Misumenops argenteus (Thomisidae): seasonality and diet on Trichogoniopsis adenantha (Asteraceae). Journal of Arachnology, 31: 297304.CrossRefGoogle Scholar
Scharff, N., Coddington, J.A., Griswold, C.E., Hormiga, G., and Bjørn, P.P. 2003. When to quit? Estimating spider species richness in a northern European deciduous forest. Journal of Arachnology, 31: 246273.CrossRefGoogle Scholar
Stoffel Efrom, C.F., Redaelli, L.R., Meirelles, R.N., and Ourique, C.B. 2011. Laboratory evaluation of phytosanitary products used for control of the South American fruit fly, Anastrepha fraterculus, in organic farming. Crop Protection, 30: 11621167.CrossRefGoogle Scholar
Sunderland, K.D. 1999. Mechanisms underlying the effects of spiders on pest populations. Journal of Arachnology, 27: 308316.Google Scholar
Thomas, M.B., Wratten, S.D., and Sotherton, N.W. 1992. Creation of ‘island’ habitats in farmland to manipulate populations of beneficial arthropods: predator densities and species composition. Journal of Applied Ecology, 29: 524531.CrossRefGoogle Scholar
Weibull, A.-C., Östman, Ö., and Granqvist, Å. 2003. Species richness in agroecosystems: the effect of landscape, habitat and farm management. Biodiversity and Conservation, 12: 13351355.CrossRefGoogle Scholar
Wise, D.H. 1993. Spiders in ecological webs. Cambridge University Press, Cambridge, United Kingdom.CrossRefGoogle Scholar
Wisniewska, J. and Prokopy, R.J. 1997. Pesticide effect on faunal composition, abundance, and body length of spiders (Araneae) in apple orchards. Environmental Entomology, 26: 763776.CrossRefGoogle Scholar
Wyss, E. 1996. The effects of artificial weed strips on diversity and abundance of the arthropod fauna in a Swiss experimental apple orchard. Agriculture, Ecosystems and Environment, 60: 4759.CrossRefGoogle Scholar
Wyss, E. and Daniel, C. 2004. Effects of autumn kaolin and pyrethrin treatments on the spring population of Dysaphis plantaginea in apple orchards. Journal of Applied Entomology, 128: 147149.CrossRefGoogle Scholar
Wyss, E., Niggli, U., and Nentwig, W. 1995. The impact of spiders on aphid populations in a strip-managed apple orchard. Journal of Applied Entomology, 119: 473478.CrossRefGoogle Scholar