Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-24T10:27:53.706Z Has data issue: false hasContentIssue false

SPECIES COMPOSITION OF ROOT-FEEDING MACROARTHROPODS IN A SUBALPINE GRASSLAND ASSOCIATED WITH PINE FOREST IN MEXICO

Published online by Cambridge University Press:  31 May 2012

A. Morón-Ríos
Affiliation:
Centro de Ecología, UNAM, Ap. Postal 70-275, C.P. 04510 Ciudad Universitaria, México, D.F. México
V.J. Jaramillo
Affiliation:
Centro de Ecología, UNAM, Ap. Postal 70-275, C.P. 04510 Ciudad Universitaria, México, D.F. México
R. Dirzo
Affiliation:
Centro de Ecología, UNAM, Ap. Postal 70-275, C.P. 04510 Ciudad Universitaria, México, D.F. México

Abstract

Below-ground herbivores have been poorly studied regardless of their importance for the establishment and composition of plant communities. In a subalpine grassland associated with a 3200-m-elevation pine forest in central Mexico, the composition and vertical and horizontal distribution of the macroarthropod root-feeding community was studied for 14 months. The root-feeding community included six species of Coleoptera and one species of Diptera. The dominant species were Phyllophaga spp. (subgenus Phytallus, "macrophylla" group) and Trachyploeomimus aff. spurcus Champion. Mean density and biomass of this community were 101 individuals and 3 g per square metre, respectively. These values were low when compared with those reported for other communities. Species were most abundant in the first 10 cm of the soil all year around. Dominant species showed a clumped horizontal distribution most of the year.

Résumé

Les herbivores souterrains ont été peu étudiés, nonobstant l’importance qu’ils peuvent avoir dans l’establissement et la composition des communautés végétales. Dans un pâturage sous-alpin situé dans une forêt de conifères dans le centre de Mexique, on a étudié pendant 14 mois la composition et la distribution verticale et horizontale de la communauté de macroarthropodes rhizophages. La communauté des rhizophages est constituée par six espèces de l’ordre Coleoptère et une espèce de l’ordre Diptère. Les espèces dominantes ont été Phyllophaga spp. (sous-genre Phytallus, groupe "macrophylla") et Trachyploeomimus aff. spurcus Champion. La densité et la biomasse moyenne annuale des "taxa" rencontrés ont été de 101 individus et 3 g par mètre carré respectivement. Ces valeurs sont faibles quand on les compare avec les décrit pour d’autres localités. La distribution verticale des espèces se concentre dans les premiers 10 cm du sol durant toute l’année. Les espèces dominantes ont un patron de distribution horizontal inégal durant la plupart de l’année.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, D. 1987. Below-ground herbivory in natural communities: A review emphasizing fossorial animals. Quarterly Review of Biology 62: 261286.CrossRefGoogle Scholar
Belfield, W. 1956. The Arthropoda of the soil in a West African pasture. Journal of Animal Ecology 25: 275285.CrossRefGoogle Scholar
Blossey, B. 1993. Herbivory belowground and biological weed control: Life history of a root-boring weevil on purple loosestrife. Oecologia 94: 380387.CrossRefGoogle Scholar
Brown, V.K. 1989. Differential effects of above and below-ground insect herbivory during early plant succession. Oikos 54: 6776.CrossRefGoogle Scholar
Brown, V.K., and Gange, A.C.. 1989. Herbivory by soil-dwelling insects depresses plant species richness. Functional Ecology 3: 667671.CrossRefGoogle Scholar
Brown, V.K., and Gange, A.C.. 1990. Insect herbivory below ground. Advances in Ecological Research 20: 158.CrossRefGoogle Scholar
Caldwell, M. 1994. Exploiting nutrients in fertile soil microsites. pp. 325–347 in Caldwell, M., and Pearcy, R.W. (Eds.), Exploitation of Environmental Heterogeneity by Plants. Academic Press, Inc., New York, NY. 429 pp.Google Scholar
Chamberlain, R.T., and Callenbach, A.J.. 1943. Oviposition of june beetles and the survival of their offsprings in grasses and legumes. Journal of Economic Entomology 36: 681688.CrossRefGoogle Scholar
Cherry, R.H. 1985. Seasonal phenology of white grubs (Coleoptera: Scarabaeidae) in Florida sugarcane fields. Journal of Economic Entomology 78: 787789.CrossRefGoogle Scholar
Eisenbeis, G., and Wichard, W.. 1987. Atlas on the Biology of Soil Arthropods. Springer-Verlag, Berlin, Germany. 411 pp.CrossRefGoogle Scholar
Endrodi, S. 1966. Monographie der Dynastinae (Coleoptera Lamellicomia) I. Teil. Entomologische Abhlungen Museum Tierkunde Dresden Bd. 33: 140.Google Scholar
Fluke, L.C., Graber, F.L., and Koch, K.. 1932. Populations of white grubs in pastures with relation to the environment. Ecology 13: 4350.CrossRefGoogle Scholar
Ford, J. 1935. The animal population of a meadow near Oxford. Journal of Animal Ecology 4: 195207.CrossRefGoogle Scholar
Franco, M., and Búrquez, A.. 1981. Guía Botánico-Ecológica del Parque Nacional Zoquiapan. Sociedad Botánica de México, Guías Botánicas de Excursiones en México IV: 2161.Google Scholar
Ghilarov, M.S. 1979. Soil fauna of brown soil in the Caucassus beech and fir mixed forest and some other communities. Pedobiologia 19: 408424.CrossRefGoogle Scholar
Graber, L.F., Fluke, C.L., and Dexter, S.T.. 1931. Insect injury of blue grass in relation to the environment. Ecology 12: 547566.CrossRefGoogle Scholar
Harper, J.L. 1977. Population Biology of Plants. Academic Press, London. 892 pp.Google Scholar
Hutchinson, J.K., and King, K.L.. 1979. Consumers. pp. 259–265 in Coupland, R.T. (Ed.), Grasslands Ecosystems of the World. International Biological Programm 18, Cambridge University Press, England. 387 pp.Google Scholar
Islas, F. 1964. Biología y combate de la gallina ciega Phyllophaga rubella en San Cayetano, México. Boletín Técnico Instituto Nacional de Investigaciones Forestales México 13: 123.Google Scholar
Jaramillo, V.J., and Detling, J.K.. 1992. Small-scale heterogeneity in a semi-arid North American grassland. I. Tillering. N uptake and retranslocation in simulated urine patches. Journal of Applied Ecology 29: 18.CrossRefGoogle Scholar
King, D.P., Mercer, C.F., and Meekings, J.S.. 1981. The ecology of black beetle Heteronychus arator (F.) (Coleoptera: Scarabaeidae). Influences of plant species on larval consumption, utilization and growth. Entomologia Experimentalis et Applicata 29: 109116.CrossRefGoogle Scholar
Krebs, C. 1989. Ecological Methodology. Harper and Row Publishing, New York, NY. 654 pp.Google Scholar
Lavelle, P.M., and Kohlmann, B.. 1984. Étude quantitative de la macrofaune du sol dans une forêt tropicale humide du Mexique (Bonampak, Chiapas). Pedobiologia 27: 377393.CrossRefGoogle Scholar
Lavelle, P.M., Maury, M.E., and Serrano, V.. 1981. Estudio cuantitativo de la fauna del suelo de la región de Laguna Verde, Ver. Epoca de Iuvias. pp. 65100in Reyes-Castillo, P. (Ed.), Estudios ecológicos en el trópico mexicano. Publ. 6 Instituto de Ecología, México.Google Scholar
Lim, K.P., Yule, N.W., and Stewart, K.R.. 1980. A historical review of the bionomics and control of Phyllophaga anxia with special reference to Quebec. Annales de la Société Entomologique du Québec 25: 163178.Google Scholar
Lloyd, J.E., and Kumar, R.. 1977. Root feeding insects of a short grass prairie and their response to grazing pressure and ecosystems stresses. pp. 267272in Marshall, J.D. (Ed.), The Belowground Ecosystem: A Synthesis of Plant-associated Processes. Range Science Department Scientific Series 26.Google Scholar
Ludwig, A.J., and Reynolds, J.F.. 1988. Statistical Ecology. John Wiley & Sons, New York, NY. 337 pp.Google Scholar
Morón, M.A. 1986. El género Phyllophaga en México. Morfología, distribución y sistemática supraespecífica (Insecta, Coleoptera). Publ. 20 Instituto de Ecologia, México. 341 pp.Google Scholar
Morón, M.A., and Terrón, R.. 1988. Entomología Práctica. Publ. 22 Instituto de Ecología, México. 504 pp.Google Scholar
Morón-Ríos, A. 1995. Interacciones planta-herbívoro en un pastizal templado: La interfase herbivoría aérea - herbivoría subterránea. Tesis Doctoral, Centro de Ecología, UACPyP, Universidad Nacional Autónoma de México. 96 pp.Google Scholar
Müller, H. 1989. Structural analysis of the phytophagous insect guilds associated with the roots of Centaurea maculosa Lam., C. diffusa Lam., and C. vallesiaca Jordan in Europe: 1. Field observations. Oecologia 78: 4152.CrossRefGoogle Scholar
Obieta, M.C., and Sarukhán, J.. 1981. Estructura y composición de la vegatación herbácea de un bosque uniespecífico de Pinus hartwegii, I: estructura y composición florística. Boletín Sociedad Botánica de México 41: 75126.Google Scholar
Ramsell, J., Malloch, A.J.C., and Whittaker, J.B.. 1993. When grazed by Tipula paludosa, Lolium perenne is a stronger competitor of Rumex obtusifolius. Journal of Ecology 81: 777786.CrossRefGoogle Scholar
Régnière, J. 1983. Popilia japonica (Coleoptera: Scarabaeidae): Distributión and movement of adults in heterogeneous environments. The Canadian Entomologist 115: 287294.CrossRefGoogle Scholar
Reinhard, H.J. 1946. Life histories of some Texas Phyllophaga. Journal of Economic Entomology 39: 475480.CrossRefGoogle Scholar
Ritcher, O.P. 1957. Biology of Scarabaeidae. Annual Review of Entomology 3: 311334.CrossRefGoogle Scholar
Rodríguez del Bosque, L.A. 1981. Preferencia en la oviposición de Phyllophaga crinita. Folia Entomológica Mexicana 48: 3738.Google Scholar
Rodríguez del Bosque, L.A. 1988. Phyllophaga crinita (Burmeister), (Coleoptera: Melolonthidae); historia de una plaga del suelo (1855–1988). pp. 53–80 in Memoria Tercera Mesa Redonda sobre Plagas del Suelo, Morelia, Michoacán, México. Sociedad Mexicana de Entomología -ICI- México. 292 pp.Google Scholar
Root, R.G. 1973. Organization of a plant–arthropod association in simple and diverse habitats: The fauna of collards (Brassica oleracea). Ecological Monographs 43: 95124.CrossRefGoogle Scholar
Salt, G., Hollick, F., Raw, F., and Brian, M.V.. 1948. The arthropod population of pasture soil. Journal of Animal Ecology 17: 139150.CrossRefGoogle Scholar
Seastedt, T.R. 1984. Belowground macroarthropods of annually burned and unburned tallgrass prairie. American Midland Naturalist 111: 405408.CrossRefGoogle Scholar
Seastedt, T.R., Ramundo, R.A., and Hayes, D.C.. 1988. Maximization of densities of soil animals by foliage herbivory: Empirical evidence, graphical and conceptual models. Oikos 51: 243248.CrossRefGoogle Scholar
Villalobos, F., and Lavelle, P.. 1990. The soil Coleoptera community of a tropical grassland from Laguna Verde, Veracruz (México). Revue d'Ecologie et de Biologie du Sol 27: 7393.Google Scholar
Weiner, L.F., and Capinera, J.L.. 1980. Preliminary study of the biology of the white grub Phyllophaga fimbripes (LeConte) (Coleoptera: Scarabaeidae). Journal of the Kansas Entomological Society 53: 701710.Google Scholar