Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-28T10:29:04.110Z Has data issue: false hasContentIssue false

SPATIAL DISTRIBUTION OF ADULTS OF OOENCYRTUS KUVANAE (HYMENOPTERA: ENCYRTIDAE), AN EGG PARASITE OF LYMANTRIA DISPAR (LEPIDOPTERA: LYMANTRIIDAE)1

Published online by Cambridge University Press:  31 May 2012

M. W. Brown
Affiliation:
Department of Entomology, The Pennsylvania State University, University Park 16802
E. Alan Cameron
Affiliation:
Department of Entomology, The Pennsylvania State University, University Park 16802

Abstract

The spatial distribution of adult Ooencyrtus kuvanae (Howard) (Hymenoptera: Encyrtidae) was examined in central Pennsylvania during 1978–1980. Data were gathered over a wide range of gypsy moth (Lymantria dispar (L.) (Lepidoptera: Lymantriidae)) densities and from all phases of population growth. There was a linear relationship between the log variance and log mean, fitting Taylor's Power Law with a power of 1.27. The degree of aggregation in O. kuvanae populations, as measured by the variance-to-mean ratio, was correlated positively with the abundance of the parasite, and was independent of host density. Aggregation was believed to result from the habit of the female parasite ovipositing repeatedly on the same egg mass, and the resultant progeny emerging synchronously. Behavior and density of O. kuvanae populations were found to depend upon the gypsy moth population condition, i.e., low, rising, high stable, outbreak, or collapsed. The frequency distribution of O. kuvanae populations fit the Poisson at densities less than 0.2 parasite adult per egg mass, a condition which occurred early and late (July, November) in the season, and the negative binomial above this density; a few distributions fit the log normal. The data were also analyzed using analyses of variance (multivariate and univariate), correlation, and regression techniques. All main effects, i.e., study area, host egg mass volume, egg mass height from the ground (within the 0–2 m sampling universe), aspect of the egg mass on the tree, and tree species, were important in explaining the variance in parasite abundance; study area differences were the most important. The effects of aspect and tree species were explained on the basis of small sample sizes, and not studied further. There was a positive correlation between host egg mass volume (= size) and parasite abundance. There was also a positive correlation between the height of the egg mass and parasite abundance during the summer; however, this relationship became negative by late fall. This seasonal change in vertical distribution was attributed to the tendency of O. kuvanae to be closer to the ground where they overwinter. Variation in adult abundance was generally greater among gypsy moth egg masses on different trees than among egg masses on the same tree, except at low parasite densities. This was attributed to the parasites searching for egg masses on one tree before dispersing to another.

Résumé

La distribution spatiale des adultes d'Ooencyrtus kuvanae (Howard) (Hymenoptera : Encyrtidae) a été examinée en Pensylvanie centrale au cours des années 1978–1980. Des données furent prélevées sur une étendue considérable de densités de la spongieuse (Lymantria dispar (L.) Lepidoptera : Lymantriidae)) et à toutes les phases de croissance de population. Une relation linéaire fut observée entre le log de la variance, et le log de la moyenne, correspondant à la loi des facteurs (Power Law) de Taylor avec un facteur de 1.27. Le degré d'aggregation des populations d'O. kuvanae, mesuré par le rapport variance/moyenne, était positivement corrélé avec l'abondance du parasite, et indépendante de la densité de l'hôte. L'aggrégation a semblé résulter de l'habitude qu'a la femelle du parasite de pondre répétitivement sur la même masse d'oeufs, et de l'émergence synchronisée de la progéniture résultante. Le comportement et la densité des populations d'O. kuvanae se sont montrés dépendants de l'état de la population de spongieuse, c'est à dire basse, croissante, élevée stable, épidémique ou effondrée. La distribution de fréquence des populations d'O. kuvanae correspond a une Poisson aux densités inférieures à 0,2 adultes du parasite par masse d'oeuf, une situation s'étant manifestée tôt et tard (Juillet, Novembre) dans la saison, et à une binomiale négative au dessus de cette densité; quelques distributions correspondent à une log normale. Les données ont aussi été soumises à l'analyse de variance (multivariée et univariée), de corrélation et de régression. Tous les facteurs principaux c'est à dire l'aire d'étude, le volume de la masse d'oeufs de l'hôte, la hauteur de la masse d'oeufs à partir du sol (à l'intérieur des 0–2 m échantillonnés), et l'espèce d'arbre, se sont avérés importants pour expliquer la variance de l'abondance du parasite; les différences entre aires d'étude étaient les plus importantes. Les effets de l'aspect et de l'espèce d'arbre ont pu être expliqués par la faible taille des échantillons, et n'ont pas été étudiés plus à fond. Une corrélation positive a été observée entre le volume de la masse d'oeufs de l'hôte (= taille) et l'abondance du parasite. Il y avait également une corrélation positive entre la hauteur de la masse d'oeufs et l'abondance du parasite durant l'été; cependant, cette relation était négative à l'automne. Ce changement saisonnier dans la distribution verticale a été attribué à la tendence d'O. kuvanae à se situer plus près du sol aux endroits où il hiverne. La variation de l'abondance des adultes était généralement plus grande entre les masses d'oeufs sur des arbres différents qu'entre les masses d'oeufs sur la même arbre, sauf aux basses densités du parasite. Ceci est attribuable au fiat que les parasites cherchent des masses d'oeufs sur la même arbre avant de chercher sur un autre arbre.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beddington, J. R. 1975. Mutual interference between parasites or predators and its effect on searching efficiency. J. Anim. Ecol. 44: 331340.CrossRefGoogle Scholar
Bess, H. A. 1961. Population ecology of the gypsy moth Porthetria dispar (L.) (Lepidoptera: Lymantriidae). Conn. Agric. exp. Stn. Bull. 646. 43 pp.Google Scholar
Bjegovié, P. 1963 a. Competition between Ooencyrtus kuwanai How, and Anastatus disparis R. (Transl, from Serbo-Croatian). Zast, Bilja 14: 543552.Google Scholar
Bjegovié, P. 1963 b. Laboratory test of the reduction capacity, and some biological characteristics of the egg parasites of the gypsy moth. (Eng. Transl.). ARH Poljo-Privredne Nauke 16: 5257.Google Scholar
Brown, M. W. 1981 a. The role of Ooencvrtus kuvanae (Howard) (Hymenoptera: Encyrtidae) in the population dynamics of the gypsy moth. M. S. Thesis, The Graduate School, The Pennsylvania State University. x + 71 pp.Google Scholar
Brown, M. W. 1981 b. Population dynamics of the gypsy moth egg parasite, Ooencvrtus kuvanae (Howard) (Hymenoptera: Encyrtidae). Ph. D. Dissertation, The Graduate School, The Pennsylvania State University. xv + 165 pp.Google Scholar
Brown, M. W. and Cameron, E. A.. 1979. Effects of disparlure and egg mass size on parasitism by the gypsy moth parasite, Ooencyrtus kuwanai. Environ. Ent. 8: 7780.CrossRefGoogle Scholar
Brown, M. W., Rosenberger, J. L., and Cameron, E. A.. 1981. Development and evaluation of a sampling scheme for the gypsy moth egg parasitoid Ooencyrtus kuvanae (Hymenoptera: Encyrtidae). Can. Ent. 113: 575584.CrossRefGoogle Scholar
Burgess, A. F. and Crossman, S. S.. 1929. Imported insect enemies of the gipsy moth and the brown-tail moth. U.S. Dep. Agric. Tech. Bull. 86. 147 pp.Google Scholar
Campbell, R. W. 1969. Studies on gypsy moth population dynamics. In Forest Insect Population Dynamics. Proc. Forest Insect Population Dynamics Workshop, 1967. U.S. Dep. Agric. Res. Pap. NE125. pp. 2934.Google Scholar
Campbell, R. W. and Sloan, R. J.. 1978. Numerical bimodality among North American gypsy moth populations. Environ. Ent. 7: 631636.CrossRefGoogle Scholar
Crossman, S. S. 1925. Two imported egg parasites of the gipsy moth, Anastatus bifasciatus Fonsc, and Schedius kuvanae Howard. J. Agric. Res. 30: 643675.Google Scholar
Doane, C. C. 1968. Changes in egg mass density, size and amount of parasitism after chemical treatments of a heavy population of the gypsy moth. J. econ. Ent. 61: 12881291.CrossRefGoogle Scholar
Dowden, P. B. 1962. Parasites and predators of forest insects liberated in the United States through 1960. U.S. Dep. Agric. For. Serv. Handbk 226. 70 pp.Google Scholar
Granek, I. and McDonough, J. L.. 1973. Collecting, rearing and releasing the gypsy moth egg parasite Ooencyrtus kuwanai (Howard). U.S. Dep. Agric. APHIS 81–11. 8 pp.Google Scholar
Griffiths, K. J. and Sullivan, C. R.. 1978. The potential for establishment of the egg parasite Ooencyrtus kuwanai in Ontario populations of the gypsy moth. Can. Ent. 110: 633638.CrossRefGoogle Scholar
Harcourt, D. G. 1961. Spatial pattern of the imported cabbage worm, Pieris rapae (L.) (Lepidoptera: Pieridae) on cultivated cruciferae. Can. Ent. 93: 945953.CrossRefGoogle Scholar
Hassell, M. P. and May, R. M.. 1974. Aggregation in predators and insect parasites and its effect on stability. J. Anim. Ecol. 43: 567594.CrossRefGoogle Scholar
Healy, M. V. R. and Taylor, L. R.. 1962. Tables for power-law transformations. Biometrika 49: 557559.CrossRefGoogle Scholar
Hérard, F. 1978. Ethology of the adults of Ooencyrtus kuwanai (Howard) (Hymenoptera: Encyrtidae). oophagous parasite of Lymantria dispar (L.) (Lepidoptera: Lymantriidae) in the Mamora forest (Morocco). (Transl, from French.) Ann. Zool. Anim. 10: 603612.Google Scholar
Johnson, N. L. and Kotz, S.. 1970 a. Distributions in statistics: Continuous univaritate distributions. Vol. 1. Wiley, N.Y.300 pp.Google Scholar
Johnson, N. L. and Kotz, S.. 1970 b. Distributions in statistics: Continuous univariate distributions. Vol. 2, Wiley, N. Y.306 pp.Google Scholar
Morrison, D. F. 1976. Multivariate statistical methods. 2nd ed. McGraw-Hill, N.Y.415 pp.Google Scholar
Myers, J. H. 1978. Selecting a measure of dispersion. Environ. Ent. 7: 619621.CrossRefGoogle Scholar
Poole, R. W. 1974. An introduction to quantitative ecology. McGraw-Hill, N. Y.532 pp.Google Scholar
Richerson, J. V., Cameron, E. A., White, D. E., and Walsh, M.. 1977. Egg parameters as a measure of population quality of the gypsy moth, Lymantria dispar. Ann. ent. Soc. Am. 71: 6064.CrossRefGoogle Scholar
Smilowitz, Z. and Rhoads, L.. 1973. An assessment of gypsy moth natural enemies in Pennsylvania. Environ. Ent. 2: 797799.CrossRefGoogle Scholar
Southwood, T. R. E. 1966. Ecological methods, with particular reference to the study of insect populations. Chapman and Hall, London. 391 pp.Google Scholar
Southwood, T. R. E. 1977. Habitat, the templet for ecological strategies? J. Anim. Ecol. 46: 337365.CrossRefGoogle Scholar
Summers, J. N. 1922. Effect of low temperature on the hatching of gypsy moth eggs. U.S. Dep. Agric. Bull. 1080. 14 pp.Google Scholar
Taylor, L. R. 1961. Aggregation, variance and the mean. Nature, Lond. 189: 732735.CrossRefGoogle Scholar
Taylor, L. R. and Taylor, R. A. J.. 1977. Aggregation, migration and population mechanics. Nature, Lond. 265: 415421.CrossRefGoogle ScholarPubMed
Taylor, L. R., Woiwood, I. P., and Perry, J. N.. 1978. The density-dependence of spatial behavior and the rarity of randomness. J. Anim. Ecol. 47: 383406.CrossRefGoogle Scholar
Waters, W. E. 1959. A quantitative measure of aggregation in insects. J. econ. Ent. 52: 11801184.CrossRefGoogle Scholar
Waters, W. E. and Henson, W. R.. 1959. Some sampling attributes of the negative binomial distribution with special reference to forest insects. For. Sci. 5: 397412.Google Scholar
Weseloh, R. M. 1972 a. Spatial distribution of the gypsy moth (Lepidoptera: Lymantriidae) and some of its parasitoids within a forest environment. Entomophaga 17: 339351.CrossRefGoogle Scholar
Weseloh, R. M. 1972 b. Influence of gypsy moth egg mass dimensions and microhabitat distribution on parasitization by Ooencvrtus kuwanai. Ann. ent. Soc. Am. 65: 6469.CrossRefGoogle Scholar
Weseloh, R. M. 1972 c. Field responses of gypsy moths and some parasites to colored surfaces. Ann. ent. Soc. Am. 65: 742746.CrossRefGoogle Scholar
Weseloh, R. M. 1972 d. Diel periodicities of some parasitoids of the gypsy moth and noctuid cutworms. Ann. ent. Soc. Am. 65: 11261131.CrossRefGoogle Scholar
Wilson, R. W. Jr. and Fontaine, R. A.. 1978. Gypsy moth egg-mass sampling with fixed- and variable-radius plots. U.S. Dep. Agric., Agric. Handbk. 523. 46 pp.Google Scholar