Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T16:59:53.489Z Has data issue: false hasContentIssue false

Some Physiological Aspects of Organogenesis in the Insect Embryo

Published online by Cambridge University Press:  31 May 2012

E. H. Salkeld
Affiliation:
Entomology Research Institute, Research Branch, Canada Department of Agriculture, Ottawa, Ontario

Abstract

In the embryo, as in the postembryonic insect, morphological development is accompanied by an increase or change in enzyme activity. The appearance of certain enzymatically active proteins in a particular tissue or organ may indicate when that tissue or organ has become functional. The time and place of appearance of several types of esterase has been determined in the tissues and organs of the developing embryo of the large milkweed bug, Oncopeltus fasciatus (Dall.). The appearance of acetylcholinesterase in the neuropile of the nervous system reflects the morphological development of this system; it may also determine the onset of functional activity. Similarly, the appearance of non-specific esterase in many tissues and organs at a definite time during their morphological development suggests a relationship between their functional differentiation and the appearance of the enzyme. Evidence for such a relationship will remain circumstantial until the physiological significance of these esterases is understood.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1964

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aldridge, W. N. 1953. Serum esterases. Biochem. J. 53: 110124.CrossRefGoogle ScholarPubMed
Allen, T. H. 1940. Enzymes in ontogenesis (Orthoptera). XI. Cytochrome oxidase in relation to respiratory activity and growth of the grasshopper egg. J. cell. comp. Physiol. 16: 149163.Google Scholar
Arnold, J. A. 1960. The course of blood circulation in mature embryos of the cockroach Blaberus giganteus (L.) (Orthoptera: Blattidae). Canad. J. Zool. 38: 10271035.Google Scholar
Beerman, W. 1963. Cytological aspects of information transfer in cellular differentiation. Amer. Zool. 3: 2332.CrossRefGoogle Scholar
Bodine, J. H. 1929. Factors influencing the rate of respiratory metabolism of a developing egg (Orthoptera). Physiol. Zool. 2: 459482.CrossRefGoogle Scholar
Bodine, J. H., and Boell, E. J.. 1934. Respiratory mechanisms of normally developing and blocked embryonic cells (Orthoptera). J. cell. comp. Physiol. 5: 97113.Google Scholar
Bodine, J. H., and Boell, E. J.. 1935a. Peroxidases and cell activity in the developing egg (Orthoptera). Proc. Soc. exp. Biol. N.Y. 32: 783787.Google Scholar
Bodine, J. H., and Boell, E. J.. 1935b. Enzymes in ontogenesis (Orthoptera) I. Tyrosinase. J. cell. comp. Physiol. 6: 263275.CrossRefGoogle Scholar
Bodine, J. H., Teppert, W. A., West, W. L. and Pyle, Z. P.. 1954. Catalase during embryonic development. Physiol. Zool. 27: 267272.Google Scholar
Butt, F. H. 1949. Embryology of the milkweed bug, Oncopeltus fasciatus (Hemiptera). Mem. Cornell Univ. Agric. Exp. Sta. 283, 58 pp.Google Scholar
Campbell, F. L. (ed.) 1959. Physiology of insect development. University of Chicago Press, Chicago.Google Scholar
Chino, H. 1958. Carbohydrate metabolism in the diapause egg of the silkworm, Bombyx mori. II. Conversion of glycogen into sorbitol and glycerol during diapause. J. Ins. Physiol. 2: 112.Google Scholar
Counce, S. J. 1961. The analysis of insect embryogenesis. Annu. Rev. Ent. 6: 295312.Google Scholar
Fukuda, S. 1951. The production of the diapause eggs by transplanting the subesophageal ganglion in the silkworm. Proc. imp. Acad. Japan 27: 672677.CrossRefGoogle Scholar
Gerebtzoff, M. A. 1959. Cholinesterases. A histochemical contribution to the solution of some fundamental problems. Pergamon Press, New York.Google Scholar
Gilbert, L. T., and Schneiderman, H. A.. 1961. The content of juvenile hormone and lipid in Lepidoptera: sexual differences and developmental changes. Gen. comp. Endocrinol. 1: 453472.Google Scholar
Grace, T. D. C. 1962. Establishment of four strains of cells from insect tissues grown in vitro. Nature, Lond. 195: 788789.Google Scholar
Hasegawa, K. 1957. The diapause hormone of the silkworm, Bombyx mori. Nature, Lond. 183: 397.Google Scholar
Hess, A. 1958. The fine structure of nerve cells and fibers, neuroglia, and sheaths of the ganglion chain in the cockroach (Periplaneta americana). J. biophys. biochem. Cytol. 4: 731742.CrossRefGoogle ScholarPubMed
Jackson, H. W. 1939. The morphology and histogenesis of the blood of the mealworm (Tenebrio molitor L.) with observations on its embryology. Unpublished Ph.D. thesis, Cornell University, Ithaca N. Y.Google Scholar
Johannsen, O. A., and Butt, F. H.. 1941. Embryology of insects and myriapods. McGraw-Hill Book Co., New York.Google Scholar
Johannson, A. S. 1957. The nervous system of the milkweed bug, Oncopeltus fasciatus (Dallas) (Heteroptera, Lygaeidae). Trans. Amer. ent. Soc. 83: 119183.Google Scholar
Jones, B. M. 1956. Endocrine activity during insect embryogenesis. Function of the ventral head glands in locust embryos (Locustana pardalina and Locusta migratoria, Orthoptera). J. exp. Biol. 33: 174185.Google Scholar
Jones, B. M., and Cunningham, I.. 1961. Growth by cell division in insect tissue culture. Exp. Cell Res. 23: 386401.CrossRefGoogle ScholarPubMed
Jones, B. M. 1962. The cultivation of insect cells and tissues. Biol. Rev. 37: 512536.Google Scholar
Laufer, H. 1960. Blood proteins in insect development. Ann. N.Y. Acad. Sci. 89: 490515.CrossRefGoogle Scholar
Laufer, H. 1961. Forms of enzymes in insect development. Ann. N.Y. Acad. Sci. 94: 825835.CrossRefGoogle ScholarPubMed
Løvtrup, S. 1958. Biochemical indices of embryonic differentiation, pp. 105125. In Nickerson, W. J. (ed.), Biochemistry of morphogenesis. Pergamon Press, London.Google Scholar
Ludwig, D., and Rothstein, F.. 1952. Changes in the distribution of nitrogen during the embryonic development of the Japanese beetle (Popillia japonica Newman). Physiol. Zool. 25: 263268.CrossRefGoogle Scholar
Ludwig, D., and Wugmeister, M.. 1955. Respiratory metabolism and the activities of cytochrome oxidase and succinic dehydrogenase during the embryonic development of the Japanese beetle, Popillia japonica Newman. J. cell. comp. Physiol. 45: 157165.CrossRefGoogle ScholarPubMed
Mahowald, A. P. 1962. Fine structure of pole cells and polar granules in Drosophila melanogaster. J. exp. Zool. 151: 201207.CrossRefGoogle Scholar
Markert, C. L., and Hunter, R. L.. 1959. The distribution of esterases in mouse tissue. J. Histochem. Cytochem. 7: 4249.CrossRefGoogle Scholar
Markert, C. L., and Møller, F.. 1959. Multiple forms of enzymes: Tissue, ontogenetic, and species specific patterns. Proc. nat. Acad. Sci. 45: 753763.Google Scholar
Mehrota, K. N. 1960. Development of the cholinergic system in insect eggs. J. Ins. Physiol. 5: 129142.CrossRefGoogle Scholar
Moog, F. 1947. Adenylpyrophosphatase in brain, liver, heart, and skeletal muscle of chick embryos and hatched chicks. J. exp. Zool. 105: 209219.Google Scholar
Moog, F. 1950. The functional differentiation of the small intestine. I. The accumulation of alkaline phosphatase in the duodenum of the chick. J. exp. Zool. 115: 109125.Google Scholar
Mounter, L. A., and Whittaker, V. P.. 1953. The hydrolysis of esters of phenol by cholinesterases and other esterases. Biochem. J. 54: 551559.CrossRefGoogle ScholarPubMed
Needham, J. 1931. Chemical embryology. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Needham, J. 1942. Biochemistry and morphogenesis. Cambridge University Press, London.Google Scholar
Okada, E., and Waddington, C. H.. 1959. The submicroscopic structure of the Drosophila egg. J. Embryol. exp. Morph. 7: 583597.Google ScholarPubMed
Pearse, A. G. E. 1960. Histochemistry theoretical and applied. Little, Brown and Co., Boston.Google Scholar
Rothstein, F. 1952. Biochemical changes during embryonic development of the Japanese beetle (Popillia japonica Newman). Physiol. Zool. 25: 171178.CrossRefGoogle Scholar
Schneiderman, H. A., and Williams, C. M.. 1954. Physiology of insect diapause. IX. The cytochrome oxidase system in relation to the diapause and development of the Cecropia silkworm. Biol. Bull. 106: 238252.CrossRefGoogle Scholar
Shen, S. C. 1958. Changes in enzymatic patterns during development. pp. 416432. In McElroy, W. D. and Glass, B. (eds.), The chemical basis of development. The Johns Hopkins Press, Baltimore.Google Scholar
Slifer, E. H. 1937. The origin and fate of the membrane surrounding the grasshopper egg; together with some experiments on the source of the hatching enzyme. Quart. J. micr. Sci. 79: 493506.Google Scholar
Smith, E. H., and Wagenknecht, A. C.. 1959. The ovicidal action of organophosphate insecticides. Canad. J. Biochem. Physiol. 37: 11351144.CrossRefGoogle ScholarPubMed
Tahmisian, T. N. 1943. Enzymes in ontogenesis: cholinesterase in developing eggs of Melanoplus differentialis. J. exp. Zool. 92: 199213.CrossRefGoogle Scholar
Velthius, H. H. W., and Van Asperen, K.. 1963. Occurrence and inheritance of esterases in Musca domestica. Ent. exp. et appl. 6: 7987.CrossRefGoogle Scholar
Wigglesworth, V. B. 1934. The physiology of ecdysis in Rhodnius prolixus (Hemiptera). II. Factors controlling moulting and metamorphosis. Quart. J. micr. Sci. 77: 191222.Google Scholar
Wigglesworth, V. B. 1958. The distribution of esterase in the nervous system and other tissues of the insect Rhodnius prolixus. Quart. J. micr. Sci. 99: 441450.Google Scholar
Wigglesworth, V. B. 1959. The histology of the nervous system of an insect, Rhodnius prolixus (Hemiptera). II. The central ganglia. Quart. J. micr. Sci. 100: 299313.Google Scholar
Wigglesworth, V. B. 1960. Axon structure and the dictyosomes (Golgi bodies) in the neurones of the cockroach Periplaneta americana. Quart. J. micr. Sci. 101: 381388.Google Scholar
Wigglesworth, V. B. 1963. The action of moulting hormone and juvenile hormone at the cellular level in Rhodnius prolixus. J. exp. Biol. 40: 231245.CrossRefGoogle Scholar
Wolsky, A. 1949. The physiology of development in insects. Proc. nat. Inst. Sci. India 15: 6771.Google Scholar
Yamada, T. 1962. The inductive phenomenon as a tool for understanding the basic mechanism of differentiation. J. cell. comp. Physiol. 60: 4964.CrossRefGoogle Scholar