Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-24T10:52:10.577Z Has data issue: false hasContentIssue false

SEASONAL DISTRIBUTION OF ADULT ECLOSION, OVIPOSITION, AND PARASITISM AND PREDATION OF EGGS OF THE SPRUCE BUD MOTH, ZEIRAPHERA CANADENSIS (LEPIDOPTERA: TORTRICIDAE)

Published online by Cambridge University Press:  31 May 2012

Donald P. Ostaff
Affiliation:
Natural Resources Canada, Canadian Forest Service — Maritimes, PO Box 4000, Fredericton, New Brunswick, Canada E3B 5P7
Dan T. Quiring
Affiliation:
Natural Resources Canada, Canadian Forest Service — Maritimes, PO Box 4000, Fredericton, New Brunswick, Canada E3B 5P7

Abstract

Spruce bud moth adults eclosed in mid-July and completed oviposition within a period of 2 weeks at 8- and 11-year-old white spruce plantations and at an old-field site in northern New Brunswick. Parasitism of bud moth eggs by Trichogramma sp. started less than 14 days after the beginning of adult bud moth eclosion and increased until the middle of August. The temporal patterns of egg parasitism and predation of viable bud moth eggs were similar in 1988 when most mortality occurred during the 2 weeks following the end of oviposition. At two sites studied in 1989, most parasitism occurred during the 4–5 weeks, and predation during the 1–3 weeks following the end of oviposition. Examination of temporal patterns of parasitoid eclosion and of the incidence of parasitism suggests that second-generation parasitoids attacked bud moth eggs at two of three sites. Depending on site and collection date, predators either showed a strong preference for unparasitized eggs or ate similar proportions of unparasitized and parasitized eggs. The incidence of egg parasitism and predation was not influenced by egg density in 1988. In 1989, a weak negative relationship between the number of eggs per cluster and the incidence of egg parasitism was not significant. However, a significant proportion of the variation in percentage egg parasitism was attributable to the interaction between egg density per shoot and collection date.

Résumé

Notre étude sur la tordeuse de l’épinette a été réalisée dans des plantations d’épinettes blanches de 8 et 11 ans et dans une vieille friche dans la nord du Nouveau-Brunswick. Les adultes de cette tordeuse sont apparus à la mi-juillet et ont complété leur ponte en 2 semaines. Le parasitisme des oeufs de tordeuse par Trichogramma a débuté moins de 14 jours après l’apparition des adultes de tordeuse et a augmenté jusqu’à la mi-août. Les patrons saisonniers de parasitisme et de prédation des oeufs de tordeuse ont été comparables en 1988, lorsque la plus grande partie de la mortalité s’est produite dans le 2 semaines suivant la période de ponte. Aux deux sites étudies en 1989, le parasitisme et la prédation se sont surtout produit respectivement dans les 4–5 semaines et dans les 1–3 semaines suivant la fin de la période de ponte. La période d’émergence des parasitoïdes et le niveau de parasitisme suggèrent que la deuxième génération de parasitoïdes se soit attaquée aux oeufs de la tordeuse à deux des trois sites. Selon le site et la date d’échantillonnage, les prédateurs ont montré soit une forte préférence pour les oeufs non parasités ou ont mangé une proportion similaire d’oeufs sains et parasités. Les niveaux de parasitisme et de prédation des oeufs n’ont pas été influencés par la densité des oeufs en 1988. En 1989, la relation négative entre le nombre d’oeufs par amas et le niveau de parasitisme n’était pas significative. Toutefois, une portion significative de la variation dans le pourcentage de parasitisme des oeufs était due à l’intéraction entre la densité des oeufs par pousse et la date d’échantillonnage.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Carroll, A.L., Lawlor, M.F., and Quiring, D.T.. 1993. Influence of feeding by Zeiraphera canadensis, the spruce bud moth, on stem-wood growth of white spruce. Forest Ecology and Management 58: 4149.CrossRefGoogle Scholar
Carroll, A.L., and Quiring, D.T.. 1992. Sucrose ingestion by Zeiraphera canadensis Mut. & Free. (Lepidoptera: Tortricidae) increases longevity and lifetime fecundity but not oviposition rate. The Canadian Entomologist 124: 335340.CrossRefGoogle Scholar
Carroll, A.L., and Quiring, D.T.. 1993 a. Influence of feeding by Zeiraphera canadensis (Lepidoptera: Tortricidae) on growth of white spruce: Larval density-damage and damage-shoot production relationships. Journal of Applied Ecology 30: 629639.CrossRefGoogle Scholar
Carroll, A.L., and Quiring, D.T.. 1993 b. Interactions between size and temperature influence fecundity and longevity of a tortricid moth, Zeiraphera canadensis. Oecologia 93: 233241.CrossRefGoogle ScholarPubMed
Carrow, J.R. 1990. Background and overview of project. pp. 5–9 in Smith, S.M., Carrow, J.R., and Laing, J.E., (Eds.), Inundative Release of the Egg Parasitoid, Trichogramma minutum (Hymenoptera: Trichogrammatidae), against Forest Insect Pests such as the Spruce Budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae): The Ontario Project 1982–1986. Memoirs of the Entomological Society of Canada 153: 87 pp.Google Scholar
Chassain, C., Bouletreau, M., and Fouillet, P.. 1988. Host exploitation by parasitoids: Local variations in foraging behaviour of females among populations of Trichogramma species. Entomologia Experimentalis et Applicata 48: 195202.CrossRefGoogle Scholar
Cook, R.M., and Hubbard, S.F.. 1977. Adaptive searching strategies in insect parasites. Journal of Animal Ecology 46: 115125.CrossRefGoogle Scholar
Einot, I., and Gabriel, K.R.. 1975. A study of the powers of several methods of multiple comparisons. Journal of the American Statistical Association 70: 574583.Google Scholar
Eveleigh, E.S., and Chant, D.A.. 1982. Experimental studies on acarine predator–prey interactions: The distribution of search effort and predation rates of a predator population in a patchy environment (Acarina: Phytoseiidae). Canadian Journal of Zoology 60: 30013009.CrossRefGoogle Scholar
Forsse, E., Smith, S.M., and Bourchier, R.S.. 1992. Flight inititation in the egg parasitoid Trichogramma minutum: Effects of ambient temperature, mates, food, and host eggs. Entomologia Experimentalis et Applicata 62: 147154.CrossRefGoogle Scholar
Holling, C.S. 1961. Principles of insect predation. Annual Review of Entomology 6: 163182.CrossRefGoogle Scholar
Huffaker, C.B., and Flaherty, D.L.. 1966. Potential biological control of two-spotted spider mite on strawberries in California. Journal of Economic Entomology 59: 786792.CrossRefGoogle Scholar
Jennings, D.T., and Houseweart, M.W.. 1983. Parasitism of spruce budworm (Lepidoptera: Tortricidae) eggs by Trichogramma minutum and absence of overwintering parasitoids. Environmental Entomology 12: 535540.CrossRefGoogle Scholar
Krantz, G.W. 1978. A Manual of Acarology, 2nd ed. Oregon State University Book Stores, Inc., Corvallis, OR. 509. pp.Google Scholar
Lund, H.O. 1934. Some temperature and humidity relations of two races of Trichogramma minutum Riley. Annals of the Entomological Society of America 27: 324340.CrossRefGoogle Scholar
Magasi, L.P. 1982. Forest Pest Conditions in the Maritimes in 1981. Canadian Forestry Service, Maritimes Forest Research Centre, Information Report M–X–135: 33 pp.Google Scholar
Magasi, L.P. 1985. Forest Pest Conditions in the Maritimes in 1984. Canadian Forestry Service, Maritimes Forest Research Centre, Information Report M–X–159: 85 pp.Google Scholar
Manweiler, S.A. 1986. Developmental and ecological comparisons of Trichogramma minutum and Trichogramma platneri (Hymenoptera: Trichogrammatidae). Pan-Pacific Entomologist 62: 128139.Google Scholar
Miller, C.E. 1953. Parasitism of Spruce Budwonn Eggs by Trichogramma minutum Riley. Department of Agriculture, Division of Forest Biology, Bi-monthly Progress Report 9(4).Google Scholar
Morrison, G., Lewis, W.J., and Nordlund, D.A.. 1980. Spatial differences in Heliothis zea egg density and the intensity of parasitism by Trichogramma spp.: An experimental analysis. Environmental Entomology 9: 7985.CrossRefGoogle Scholar
Morrison, G., and Strong, D.R. Jr., 1980. Spatial variations in host density and the intensity of parasitism: Some empirical examples. Environmental Entomology 9: 149152.CrossRefGoogle Scholar
Noldus, L.P.J.J., van Lenteren, J.C., and Lewis, W.J.. 1991. How Trichogramma parasitoids use moth sex pheromones as kairomones: Orientation behaviour in a wind tunnel. Physiological Entomology 16: 313327.CrossRefGoogle Scholar
Peterson, A. 1931. Refrigeration of Trichogramma minutum Riley and other notes. Journal of Economic Entomology 24: 10701074.CrossRefGoogle Scholar
Quiring, D., Turgeon, J.J., Simpson, D., and Smith, A.. 1991. Genetically based differences in susceptibility of white spruce to the spruce bud moth. Canadian Journal of Forest Research 21: 4247.CrossRefGoogle Scholar
Reznik, S.Ya., and Umarova, T.Ya.. 1991. Host population density influence on host acceptance in Trichogramma. Entomologia Experimentalis et Applicata 58: 4954.CrossRefGoogle Scholar
Rose, A.H., and Lindquist, O.H.. 1977. Insects of Eastern Spruces, Fir and Hemlock. Department of Environment, Canadian Forestry Service, Forestry Technical Report 23: 159 pp. Ottawa, 1977.Google Scholar
SAS Institute Inc. 1982. SAS User's Guide: Statistics, 1982 Edition. SAS Institute Inc., Cary, NC. 584 pp.Google Scholar
Simpson, R.A. 1992. New Brunswick Plantation Pest Assessment Survey Report for 1991. Forestry Canada — Maritimes Region, Technical Note 262: 8 pp.Google Scholar
Stiling, P. 1987. The frequency of density-dependence in insect host–parasitoid systems. Ecology 68: 844856.CrossRefGoogle Scholar
Thomas, H.A. 1966. Parasitism by Trichogramma minutum (Hymenoptera: Trichogrammatidae) in the spruce budworm outbreak in Maine. Annals of the Entomological Society of America 59: 723725.CrossRefGoogle Scholar
Turgeon, J.J. 1985. Life cycle and behavior of spruce bud moth, Zeiraphera canadensis (Lepidoptera: Olethreutidae), in New Brunswick. The Canadian Entomologist 117: 12391247.CrossRefGoogle Scholar
Turgeon, J.J. 1992. Status of research on the development of management tactics and strategies for the spruce bud moth in white spruce plantations. Forestry Chronicle 68: 614622.CrossRefGoogle Scholar
Turgeon, J.J., Nelson, N., and Kettela, E.G.. 1987. Reproductive biology of the spruce budmoth, Zeiraphera canadensis Mut. & Free. (Lepidoptera: Tortricidae), in New Brunswick. The Canadian Entomologist 119: 361364.CrossRefGoogle Scholar
Turgeon, J.J., and Régnière, J.. 1987. Development of sampling techniques for the spruce bud moth, Zeiraphera canadensis (Lepidoptera: Tortricidae). The Canadian Entomologist 119: 239249.CrossRefGoogle Scholar
Vinson, S.B. 1976. Host selection by insect parasitoids. Annual Review of Entomology 21: 109133.Google Scholar
Zar, J.H. 1984. Biostatistical Analysis, 2nd ed. Prentice-Hall, Inc., Englewood Cliffs, NJ.718 pp.Google Scholar