Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-25T16:21:54.496Z Has data issue: false hasContentIssue false

Saproxylic insect assemblages in Canadian forests: diversity, ecology, and conservation1

Published online by Cambridge University Press:  02 April 2012

David W. Langor*
Affiliation:
Canadian Forest Service, Natural Resources Canada, 5320 – 122 Street, Edmonton, Alberta, Canada T6H 3S5
H.E. James Hammond
Affiliation:
Canadian Forest Service, Natural Resources Canada, 5320 – 122 Street, Edmonton, Alberta, Canada T6H 3S5
John R. Spence
Affiliation:
Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada T6G 2H1
Joshua Jacobs
Affiliation:
Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada T6G 2H1
Tyler P. Cobb
Affiliation:
Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada T6G 2H1
*
2Corresponding author (e-mail: [email protected]).

Abstract

Saproxylic insect assemblages inhabiting dead wood in Canadian forests are highly diverse and variable but quite poorly understood. Adequate assessment of these assemblages poses significant challenges with respect to sampling, taxonomy, and analysis. Their assessment is nonetheless critical to attaining the broad goals of sustainable forest management because such species are disproportionately threatened elsewhere by the reductions in dead wood generally associated with commercial exploitation of northern forests. The composition of the saproxylic fauna is influenced by many factors, including tree species, degree of decay, stand age, and cause of tree death. Wildfire and forest harvesting have differential impacts on saproxylic insect assemblages and on their recovery in postdisturbance stands. Exploration of saproxylic insect responses to variable retention harvesting and experimental burns is contributing to the development of prescriptions for conserving saproxylic insects in boreal forests. Understanding of processes that determine diversity patterns and responses of saproxylic insects would benefit from increased attention to natural history. Such work should aim to provide a habitat-classification system for dead wood to better identify habitats (and associated species) at risk as a result of forest management. This tool could also be used to improve strategies to better maintain saproxylic organisms and their central nutrient-cycling functions in managed forests.

Résumé

Les peuplements d’insectes saproxyliques qui habitent le bois mort dans les forêts canadiennes sont très diversifiés et variables, mais bien mal connus. Une évaluation adéquate de ces peuplements soulève des problèmes importants d’échantillonnage, de taxonomie et d’analyse. Leur évaluation est néanmoins essentielle pour atteindre les grands objectifs de la gestion durable des forêts, parce que ces espèces font face ailleurs à une menace démesurément élevée à cause des réductions générales du bois mort associées à l’exploitation commerciale des forêts nordiques. La composition de la faune saproxylique est influencée par plusieurs facteurs, dont l’espèce d’arbre, l’importance de la décomposition, l’âge du peuplement forestier et la cause de la mort de l’arbre. Les feux de brousse et la coupe forestière ont des impacts différents sur les peuplements d’insectes saproxyliques et sur leur récupération dans les peuplements forestiers qui se développent après la perturbation. L’examen des réactions des insectes saproxyliques aux coupes avec des taux variables de rétention et aux feux expérimentaux contribue à l’élaboration de suggestions pour la conservation des insectes saproxyliques dans les forêts boréales. Une attention plus grande portée à l’histoire naturelle des insectes saproxyiliques favoriserait une meilleure compréhension des processus déterminants de leurs patrons de diversité et de leurs réactions. Ces travaux devraient chercher à dresser un système de classification des habitats de bois mort afin de mieux identifier les habitats (et leurs espèces associées) qui sont menacés par la gestion des forêts. Un tel outil pourrait aussi servir à améliorer les stratégies pour assurer le maintien des organismes saproxyliques et de leurs fonctions centrales de recyclage des nutriments dans les forêts aménagées.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, L.I., and Hytteborn, H. 1991. Bryophytes and decaying wood — a comparison between managed and natural forest. Holarctic Ecology, 14: 121130.Google Scholar
Angelstam, P. 1997. Landscape analysis as a tool for the scientific management of biodiversity. Ecological Bulletins, 46: 140170.Google Scholar
Attiwill, P.M. 1994. The disturbance of forest ecosystems: the ecological basis for conservative management. Forest Ecology and Management, 63: 247300.Google Scholar
Bader, P., Jansson, S., and Jonsson, B.G. 1995. Wood-inhabiting fungi and substratum decline in selectively logged boreal spruce forests. Biological Conservation, 72: 355362.Google Scholar
Biological Survey of Canada. 2006. Forest arthropod biodiversity projects in Canada [online]. Available at http://www.biology.ualberta.ca/bsc/english/forestprojectssummary.htm [accessed 1 December 2006].Google Scholar
Bishop, D.J. 1998. Saproxylic beetles and deadwood structure in managed and naturally disturbed spruce forests in Nova Scotia. M.Sc. thesis, Carleton University, Ottawa, Ontario.Google Scholar
Boddy, L. 1992. Development and function of fungal communities in decomposing wood. In The fungal community: its organization and role in the ecosystem. Edited by Carroll, G.C. and Wicklow, D.T.. Marcel Dekker, Inc., New York. pp. 749782.Google Scholar
Bousquet, Y. (Editor). 1991. Checklist of beetles of Canada and Alaska. Publication 1861/E, Agriculture Canada, Ottawa, Ontario.Google Scholar
Bright, D.E. Jr., 1976. The insects and arachnids of Canada. Part 2: The bark beetles of Canada and Alaska (Coleoptera: Scolytidae). Publication 1576, Canada Department of Agriculture, Ottawa, Ontario.Google Scholar
Bright, D.E. Jr., 1987. The insects and arachnids of Canada. Part 15: The metallic wood-boring beetles of Canada and Alaska. Publication 1810, Agriculture Canada, Ottawa, Ontario.Google Scholar
Buddle, C.M. 2001. Spiders (Araneae) associated with downed woody material in a deciduous forest in central Alberta, Canada. Agricultural and Forest Entomology, 3: 241251.CrossRefGoogle Scholar
Buddle, C.M., Spence, J.R., and Langor, D.W. 2000. Succession of boreal forest spider assemblages following wildfire and harvesting. Ecography, 23: 424436.CrossRefGoogle Scholar
Buddle, C.M., Langor, D.W., Pohl, G.R., and Spence, J.R. 2006. Arthropod responses to harvesting and wildfire: implications for emulation of natural disturbance in forest management. Biological Conservation, 128: 346357.Google Scholar
Chénier, J.V.R., and Philogène, B.J.R. 1989. Evaluation of three trap designs for the capture of conifer-feeding beetles and other forest Coleoptera. The Canadian Entomologist, 121: 159168.CrossRefGoogle Scholar
Cobb, T.P. 2006. Boreal mixed-wood beetles and the cumulative ecological consequences of disturbance. Ph.D. thesis, University of Alberta, Edmonton, Alberta.Google Scholar
Danks, H.V. 1979. Canada and its insect fauna. Memoirs of the Entomological Society of Canada No. 108.CrossRefGoogle Scholar
Danks, H.V., and Foottit, R.G. 1989. Insects of the boreal zone of Canada. The Canadian Entomolo-gist, 121: 625690.CrossRefGoogle Scholar
Dollin, P. 2004. Effects of stand age and silvicultural treatment on beetle (Coleoptera) biodiversity in coniferous stands in southwest Nova Scotia. Master of Environmental Studies thesis, Dalhousie University, Halifax, Nova Scotia.Google Scholar
Donato, D.C., Fontaine, J.B., Campbell, J.L., Robinson, W.D., Kauffman, J.B., and Law, B.E. 2006. Post-wildfire logging hinders regeneration and increases fire risk. Science (Washington, D.C.), 311: 352.Google Scholar
Dufrêne, M., and Legendre, P. 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs, 67: 345366.Google Scholar
Ecological Stratification Working Group. 1995. A national ecological framework for Canada. Centre for Land and Biological Resources Research, Research Branch, Agriculture and Agri-Food Canada, Ottawa, Ontario, and Ecozone Analysis Branch, State of the Environment Directorate, Environment Canada, Hull, Quebec.Google Scholar
Edmonds, R.L., and Eglitis, A. 1989. The role of Douglas-fir beetle and wood borers in the decomposition of and nutrient release from Douglas-fir logs. Canadian Journal of Forest Research, 19: 853859.CrossRefGoogle Scholar
Ehnström, B. 2001. Leaving deadwood for insects in boreal forests — suggestions for the future. Scandinavian Journal of Forest Research Supplement 3. pp. 9198.Google Scholar
Esseen, P.A., Ehnström, B., Ericson, L., and Sjöberg, K. 1992. Boreal forests — the focal habitats of Fennoscandia. In Ecological principles of nature conservation. Edited by Hansson, L.. Elsevier, Amsterdam, the Netherlands. pp. 252325.CrossRefGoogle Scholar
Esseen, P.A., Ehnström, B., Ericson, L., and Sjöberg, K. 1997. Boreal forests. Ecological Bulletins, 46: 1647.Google Scholar
Franklin, J.F., Shugart, H.H., and Harmon, M.E. 1987. Tree death as an ecological process. Bioscience, 37: 550556.CrossRefGoogle Scholar
Franklin, J.F., Berg, D.A., Thornburgh, D.A., and Tappeiner, J.C. 1997. Alternative silvicultural approaches to timber harvesting: variable retention harvest systems. Island Press, Washington, D.C.Google Scholar
Gandhi, K.J.K., Spence, J.R., Langor, D.W., and Morgantini, L.E. 2004. Harvest residuals as stand analogues of fire residuals. Canadian Journal of Forest Research, 34: 13191331.CrossRefGoogle Scholar
Gotelli, N.J., and Colwell, R.K. 2001. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters, 4: 379391.CrossRefGoogle Scholar
Greene, D.F., Gauthier, S., Noël, J., Rouseau, M., and Bergeron, Y. 2006. A field experiment to determine the effect of post-fire salvage on seedbeds and tree regeneration. Frontiers in Ecology and the Environment, 4: 6974.CrossRefGoogle Scholar
Grove, S.L. 2002. Saproxylic insect ecology and the sustainable management of forests. Annual Review of Ecology and Systematics, 33: 123.Google Scholar
Hagan, J.M., and Grove, S.L. 1999. Coarse woody debris. Journal of Forestry, 97: 611.Google Scholar
Haila, Y., Hanski, I.K., Niemelä, J., Punttila, P., Raivio, S., and Tukia, H. 1994. Forestry and the boreal fauna: matching management with natural forest dynamics. Annales Zoologici Fennici, 31: 187202.Google Scholar
Hammond, H.E.J. 1996. Arthropod biodiversity of Populus spp. coarse woody material in north-central Alberta. M.Sc. thesis, University of Alberta, Edmonton, Alberta.CrossRefGoogle Scholar
Hammond, H.E.J. 1997. Arthropod biodiversity from Populus coarse woody material in north-central Alberta: a review of taxa and collection methods. The Canadian Entomologist, 129: 10091033.Google Scholar
Hammond, H.E.J., Langor, D.W., and Spence, J.R. 2001. Early colonization of Populus wood by saproxylic beetles (Coleoptera). Canadian Journal of Forest Research, 31: 11751183.Google Scholar
Hammond, H.E.J., Langor, D.W., and Spence, J.R. 2004. Saproxylic beetles (Coleoptera) using Populus in boreal aspen stands of western Canada: spatiotemporal variation and conservation of assemblages. Canadian Journal of Forest Research, 34: 119.Google Scholar
Harmon, M.E., Franklin, J.F., Swanson, F.J., Sollins, P., Gregory, S.V., Lattin, J.D., Anderson, N.H., Cline, S.P., Aumen, N.G., Sedell, J.R., Lienkaenper, G.W., Cromack, K.J., and Cummins, K.W. 1986. Ecology of coarse woody depris in temperate ecosystems. Advances in Ecological Research, 15: 133302.Google Scholar
Heliövaara, K., and Väisänen, R. 1984. Effects of modern forestry on northwestern European forest invertebrates: a synthesis. Acta Forestalia Fennica, 189: 132.Google Scholar
Hindmarch, T.D., and Reid, M.L. 2001. Thinning of mature lodgepole pine stands increases scolytid bark beetle abundance and diversity. Canadian Journal of Forest Research, 31: 15021512.Google Scholar
Hooper, D.U., Chapin, F.S. III, Ewel, J.J., Hector, A., Inchausti, P., Lavorel, S., Lawton, J.H., Lodge, D.M., Loreau, M., Naeem, S., Schmid, B., Setälä, H., Symstad, A.J., Vandermeer, J., and Wardle, D.A. 2005. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecological Monographs, 75: 335.Google Scholar
Huber, J.T., and Langor, D.W. 2004. Systematics: its role in supporting sustainable forest management. Forestry Chronicle, 80: 451457.Google Scholar
Hunter, M.L. 1993. Natural fire regimes as spatial models for managing boreal forests. Biological Conservation, 65: 115120.CrossRefGoogle Scholar
Hurlbert, S.H. 1971. The non-concept of species diversity: a critique and alternative parameters. Ecology, 52: 577586.Google Scholar
Hyvärinen, E., Kouki, J., and Martikainen, P. 2006. A comparison of three trapping methods used to survey forest-dwelling Coleoptera. European Journal of Entomology, 103: 397407.CrossRefGoogle Scholar
Jacobs, J.M. 2004. Saproxylic beetle assemblages in the boreal mixedwood of Alberta: succession, wildfire and variable retention forestry. M.Sc. thesis, University of Alberta, Edmonton, Alberta.Google Scholar
Jacobs, J.M., Spence, J.R., and Langor, D.W. 2007 a. Influence of forest succession and dead wood qualities on boreal saproxylic beetles. Agriculture and Forest Entomology, 9: 316.Google Scholar
Jacobs, J.M., Spence, J.R., and Langor, D.W. 2007 b. Variable retention harvesting of white spruce stands and saproxylic beetle assemblages. Canadian Journal of Forest Research, 37: 16311642.Google Scholar
Kaila, L. 1993. A new method for collecting quantitative samples of insects associated with decaying wood or wood fungi. Entomologica Fennica, 29: 2123.Google Scholar
Kehler, D., and Bondrup-Nielsen, S. 1999. Effects of isolation on the occurrence of a fungivorous forest beetle, Bolitotherus cornutus, at different spatial scales in fragmented and continuous forests. Oikos, 84: 3543.Google Scholar
Klimaszewski, J. 2000. Diversity of the rove beetles in Canada and Alaska (Coleoptera, Staphylinidae). Mémoire de la Société royale belge d'Entomologie, 39: 3126.Google Scholar
Klimaszewski, J., Langor, D.W., Savard, K., Pelletier, G., Chandler, D.S., and Sweeney, J. 2007. Rove beetles (Coleoptera: Staphylinidae) in yellow birch dominated stands of southeastern Quebec, Canada: diversity, abundance, and description of a new species. The Canadian Entomologist, 139: 793833.CrossRefGoogle Scholar
Koivula, M.J., Cobb, T.P., Dechene, A.D., Jacobs, J., and Spence, J.R. 2006. Two Sericoda Kirby, 1837 (Coleoptera: Carabidae) species in the boreal mixed-wood post-fire environment. Entomologica Fennica, 17: 315324.CrossRefGoogle Scholar
Langor, D.W., and Raske, A.G. 1987. Emergence, host attack and overwintering of the eastern larch beetle, Dendroctonus simplex LeConte (Coleoptera: Scolytidae), in Newfoundland. The Canadian Entomologist, 119: 975983.Google Scholar
Langor, D.W., and Spence, J.R. 2006. Arthropods as ecological indicators of sustainability in Canadian forests. Forestry Chronicle, 82: 344350.Google Scholar
Langor, D.W., Spence, J.R., Hammond, H.E.J., Jacobs, J., and Cobb, T. 2006. Maintaining saproxylic insects in extensively managed boreal forests: the Canadian experience. United States Department of Agriculture Forest Service General Technical Report SRS-93. pp. 8397Google Scholar
Lawrence, J.F. 1973. Host preferences in ciid beetles (Coleoptera: Ciidae) inhabiting fruiting bodies of basidiomycetes in North America. Bulletin of the Museum of Comparative Zoology at Harvard University, 145: 163212.Google Scholar
Lee, P.C., Crites, C., Nietfeld, M., Nguyen, H.V., and Stelfox, J.B. 1997. Characteristics and origins of deadwood material in aspen dominated boreal forests. Ecological Applications, 7: 691701.CrossRefGoogle Scholar
Lindenmayer, D.B., and Noss, R.F. 2006. Salvage logging, ecosystem processes, and biodiversity conservation. Conservation Biology, 20: 949958.Google Scholar
Lindhe, A., and Lindelöw, A. 2004. Cut high stumps of spruce, birch, aspen and oak as breeding substrates for saproxylic beetles. Forest Ecology and Management, 203: 120.Google Scholar
Majka, C.G., and Pollock, D.A. 2006. Understanding saproxylic beetles: new records of Tetratomidae, Melandryidae, Synchroidae, and Scraptidae from the Maritime Provinces of Canada. Zootaxa, 1248: 4568.CrossRefGoogle Scholar
Martikainen, P., and Kaila, L. 2004. Sampling saproxylic beetles: lessons from a 10-year monitoring study. Biological Conservation, 120: 171181.Google Scholar
Martikainen, P., and Kouki, J. 2003. Sampling the rarest: threatened beetles in boreal forest biodiversity inventories. Biodiversity and Conservation, 12: 18151831.CrossRefGoogle Scholar
Martikainen, P., Siitonen, J., Kaila, L., Punttila, P., and Rauh, J. 1999. Bark beetles (Coleoptera: Scolytidae) and associated beetle species in mature managed and old-growth boreal forests in southern Finland. Forest Ecology and Management, 116: 233245.CrossRefGoogle Scholar
Martikainen, P., Siitonen, J., Punttila, P., Kaila, L., and Rauh, J. 2000. Species richness of Coleoptera in mature managed and old-growth boreal forests in southern Finland. Biological Conservation, 94: 199209.Google Scholar
McCann, K.S. 2000. The diversity–stability debate. Nature (London), 405: 228233.CrossRefGoogle ScholarPubMed
McGill, W.B., and Spence, J.R. 1985. Soil fauna and soil structure: feedback between size and architecture. Quaestiones Entomologicae, 21: 645654.Google Scholar
Morissette, J.L., Cobb, T.P., Brigham, R.M., and James, P.C. 2002. The response of boreal forest songbird communities to fire and post-fire harvesting. Canadian Journal of Forest Research, 32: 21692183.Google Scholar
Naeem, S. 2002. Ecosystem consequences of biodiversity loss: the evolution of a paradigm. Ecology, 83: 15371552.Google Scholar
Naeem, S., Chapin, F.S., Costanza, R., Ehrlich, P.R., Golley, F.B., Hooper, D.U., Lawton, J.H., O'Neill, R.V., Mooney, H.A., Sala, O.E., Symstad, A.J., and Tilman, D. 1999. Biodiversity and ecosystem functioning: maintaining natural life support processes. Issues in Ecology, 4: 112.Google Scholar
Nappi, A., Drapeau, P., and Savard, J.-P. 2004. Salvage logging after wildfire in the boreal forest: Is it becoming a hot issue for wildlife? Forestry Chronicle, 80: 6774.CrossRefGoogle Scholar
Natural Resources Canada. 2003. The state of Canada's forests 2002–2003. Canadian Forest Service, Natural Resources Canada, Ottawa, Ontario.Google Scholar
Nilsson, S.G., Hedlin, T., and Niklasson, M. 2001. Biodiversity and its assessment in boreal and nemoral forests. Scandinavian Journal of Forest Research, 16(Suppl. 3): 1026.Google Scholar
Oliver, I., and Beattie, A.J. 1996. Designing a cost-effective invertebrate survey. Ecological Applications. 6: 594607.Google Scholar
Palm, T. 1951. Die Holz- und Rinden-Käfer der nordschwedischen Laubbäume. Meddelanden från Statens Skogsforskningsinstitut, 40(2): 1242.Google Scholar
Palm, T. 1959. Die Holz- und Rinden-Käfer der südund mittelschwedischen Laubbäume. Opuscula Entomologica Supplement 16. pp. 1375.Google Scholar
Pedlar, J.H., Pearce, J.L., Venier, L.A., and McKenney, D.W. 2002. Coarse woody debris in relation to disturbance and forest type in boreal Canada. Forest Ecology and Management, 158: 189194.Google Scholar
Peltonen, M., and Heliövaara, K. 1998. Incidence of Xylechinus pilosus and Cryphalus saltuarius (Scolytidae) in forest–clearcut edges. Forest Ecology and Management, 103: 141147.Google Scholar
Phillips, I.D., Cobb, T.P., Spence, J.R., and Brigham, R.M. 2006. Salvage logging, edge effects and carabid beetles: connections to conservation and sustainable forest management. Environmental Entomology, 35: 950957.Google Scholar
Pratt, L., and Urquhart, I. 1994. The last great forest. NeWest Press, Edmonton, Alberta.Google Scholar
Ranius, T., and Jansson, N. 2002. A comparison of three methods to survey saproxylic beetles in hollow oaks. Biodiversity and Conservation, 11: 17591771.CrossRefGoogle Scholar
Renvall, P. 1995. Community structure and dynamics of wood-rotting Basidiomycetes on decomposing conifer trunks in northern Finland. Karstenia, 35: 151.Google Scholar
Safranyik, L., Shore, T.L., Carroll, A.L., and Linton, D.A. 2004. Bark beetle (Coleoptera: Scolytidae) diversity in spaced and unmanaged mature lodgepole pine (Pinaceae) in southeastern British Columbia. Forest Ecology and Management, 200: 2338.CrossRefGoogle Scholar
Saint-Germain, M., Drapeau, P., and Hébert, C. 2004 a. Comparison of Coleoptera assemblages from a recently burned and unburned black spruce forests of northeastern North America. Biological Conservation, 118: 583592.Google Scholar
Saint-Germain, M., Drapeau, P., and Hébert, C. 2004 b. Xylophagous insect species composition and patterns of substratum use on fire-killed black spruce in central Quebec. Canadian Journal of Forest Research, 34: 677685.Google Scholar
Saint-Germain, M., Buddle, C.M., and Drapeau, P. 2006. Sampling saproxylic Coleoptera: scale issues and the importance of behaviour. Environmental Entomology, 35: 478487.CrossRefGoogle Scholar
Sanders, H.L. 1968. Marine benthic diversity: a comparative study. American Naturalist, 102: 243282.CrossRefGoogle Scholar
Schiegg, K. 2000 a. Are there saproxylic beetle species characteristic of high dead wood connectivity? Ecography, 23: 579587.CrossRefGoogle Scholar
Schiegg, K. 2000 b. Effects of dead wood volume and connectivity on saproxylic insect species diversity. Écoscience, 7: 290298.Google Scholar
Schmiegelow, F.A., Stepnisky, D.P., Stambaugh, C.A., and Koivula, M. 2006. Reconciling salvage logging of boreal forests with a natural disturbance management model. Conservation Biology, 20: 971983.Google Scholar
Selby, R.D. 2005. Diversity of saproxylic Cecidomyiidae (Diptera) in a Quebec hardwood forest. M.Sc. thesis, McGill University, Montréal, Quebec.Google Scholar
Siitonen, J. 2001. Forest management, coarse woody debris and saproxylic organisms: Fennoscandian boreal forests as an example. Ecological Bulletins, 49: 1141.Google Scholar
Siitonen, J. 2004. Decaying wood and saproxylic Coleoptera in two old spruce forests: a comparison based on two sampling methods. Annales Zoologici Fennici, 31: 8995.Google Scholar
Siitonen, J., and Martikainen, P. 1994. Occurrence of rare and threatened insects living on decaying Populus tremula: a comparison between Finnish and Russian Karelia. Scandinavian Journal of Forest Research, 9: 185191.Google Scholar
Siitonen, J., and Saaristo, L. 2000. Habitat requirements of a threatened boreal old-growth species, Pytho kolwensis Sahlberg (Coleoptera, Pythidae), in Finland. Biological Conservation, 94: 211220.CrossRefGoogle Scholar
Speight, M.C.D. 1989. Saproxylic invertebrates and their conservation. Nature and Environment Series 42. Council of Europe, Strasbourg, France.Google Scholar
Spence, J.R. 2006. Applied measures, biomonitoring and credibility of C&I: management out of Pandora's box. Forestry Chronicle, 82: 283292.Google Scholar
Spence, J.R., Langor, D.W., Hammond, H.E.J., and Pohl, G. 1997. Beetle abundance and diversity in a boreal mixedwood forest. In Forests and Insects: Proceedings of the 18th Royal Entomological Society Symposium, London, United Kingdom, 13–15 September 1995. Edited by Watt, A.D. and Stork, N.E.. Chapman and Hall, London, United Kingdom. pp. 285299.Google Scholar
Spence, J.R., Buddle, C.M., Gandhi, K., Langor, D.W., Volney, W.J.A., Hammond, H.E.J., and Pohl, G.R. 1999 a. Invertebrate biodiversity, forestry and emulation of natural disturbance: a down-to-earth perspective. United States Department of Agriculture Forest Service General Technical Report PNW-GTR-461. pp. 8090.Google Scholar
Spence, J.R., Volney, W.J.A., Lieffers, V.J., Weber, M.G., Luchkow, M.G., and Vinge, T.W. 1999 b. The Alberta EMEND project: recipe and cooks' argument. In Science and practice: sustaining the boreal forest. Edited by Veeman, T.S., Smith, D.W., Purdy, B.G., Salkie, F.J., and Larkin, G.A.. Sustainable Forest Management Network, Edmonton, Alberta. pp. 583590.Google Scholar
Stocks, B.J., Fosberg, M.A., Lynham, T.J., Mearns, L., Wotton, B.M., Yang, Q., Jin, J.-Z., Lawrence, K., Hartley, G.R., Mason, J.A., and McKenney, D.W. 1998. Climate change and forest fire potential in Russian and Canadian boreal forests. Climatic Change, 38: 113.Google Scholar
Tilman, D., Reich, P.B., Knops, J., Wedin, D., Mielke, T., and Lehman, C. 2001. Diversity and productivity in a long-term grassland experiment. Science (Washington, D.C.), 294: 843845.Google Scholar
Vance, C.C., Kirby, R., Malcolm, J.R., and Smith, S.M. 2003. Community composition of long-horned beetles (Coleoptera: Cerambycidae) in the canopy and understorey of sugar maple and white pine stands in south-central Ontario. Environmental Entomology, 32: 10661074.Google Scholar
Vanderwel, M.C., Malcolm, J.R., Smith, S.M., and Islam, N. 2006. Insect community composition and trophic guild structure in decaying logs from eastern Canadian pine-dominated forests. Forest Ecology and Management, 225: 190199.Google Scholar
Wheeler, Q.D., and Blackwell, M. 1984. Fungus–insect relationships: perspectives in ecology and evolution. Columbia University Press, New York.Google Scholar
Wikars, L.O. 1992. Forest fires and insects. Entomologisk Tidskrift, 113(4): 111.Google Scholar
Wikars, L.O., Sahlin, E., and Ranius, T. 2005. A comparison of three methods to estimate species richness of saproxylic beetles (Coleoptera) in logs and high stumps of Norway spruce. The Canadian Entomologist, 137: 304324.Google Scholar
Work, T.T., Spence, J.R., Volney, W.J.A., and Burton, P.J. 2003. Sustainable forest management as license to think and to try something different. In Towards sustainable management of the boreal forest. Edited by Burton, P.J., Messier, C., Smith, D.W., and Adamowicz, W.L.. NRC Research Press, Ottawa, Ontario. pp. 953970.Google Scholar
Zeran, R.M., Anderson, R.S., and Wheeler, T.A. 2006. Sap beetles (Coleoptera: Nitidulidae) in managed and old-growth forests in southeastern Ontario, Canada. The Canadian Entomologist, 138: 123237.Google Scholar
Zeran, R.M., Anderson, R.S., and Wheeler, T.A. 2007. Effect of small-scale forest management on fungivorous Coleoptera in old-growth hemlock — hardwood forest fragments in southeastern Ontario, Canada. The Canadian Entomologist, 139: 118130.Google Scholar
Økland, B. 1996. Unlogged forest: important sites for preserving the diversity of mycetophilids (Diptera: Sciaroidea). Biological Conservation, 76: 297310.Google Scholar