Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-22T13:42:25.325Z Has data issue: false hasContentIssue false

RESPONSES OF CONOPHTHORUS SPP. (COLEOPTERA: SCOLYTIDAE) TO BEHAVIORAL CHEMICALS IN FIELD TRIALS: A TRANSCONTINENTAL PERSPECTIVE

Published online by Cambridge University Press:  31 May 2012

Nancy Gillette Rappaport*
Affiliation:
USDA Forest Service, Pacific Southwest Research Station, Berkeley, California, United States 94701
John D. Stein
Affiliation:
USDA Forest Service, Forest Health Technology Enterprise Team, Morgantown, West Virginia, United States 26505
Adolfo Arturo del Rio Mora
Affiliation:
University of Michoacán, Morelia, Michoacán, Mexico
Gary DeBarr
Affiliation:
USDA Forest Service, Southern Research Station, Athens, Georgia, United States 30602
Peter de Groot
Affiliation:
Great Lakes Forestry Centre, Canadian Forest Service, Natural Resources Canada, Sault Ste. Marie, Ontario, Canada P6A 5M7
Sylvia Mori
Affiliation:
USDA Forest Service, Pacific Southwest Research Station, Berkeley, California, United States 94701
*
1 Author to whom all correspondence should be addressed (E-mail: [email protected]).

Abstract

We tested six behavioral chemicals, pityol, conophthorin, 4-allylanisole, verbenone, 2-hexenol, and α-pinene, in a series of field trials directed at six combinations of Conophthorus Hopkins – Pinus L. spp. (Pinaceae) in sites distributed across North America. Beetle – host tree combinations included Conophthorus ponderosae Hopkins on Pinus ponderosa Laws., C. ponderosae on Pinus monticola Dougl., Conophthorus conicolens Wood on Pinus pseudostrobus Lindl., Conophthorus teocotum Wood on Pinus teocote Schl. & Cham., Conophthorus coniperda (Schwarz) on Pinus strobus L., and Conophthorus resinosae Hopkins on Pinus resinosa Ait. trans-Verbenol was tested only on C. resinosae on P. resinosa. Traps baited with pityol caught more beetles than unbaited traps in nearly all of the assays, and conophthorin consistently inhibited male beetle response to pityol for all species tested. Behavioral responses of species of Conophthorus to α-pinene appeared to parallel host phylogeny, inasmuch as beetles using Haploxylon pines as hosts utilized α-pinene as a synergist for the beetle-produced pityol, whereas beetles using Diploxylon pines as hosts did not. α-Pinene was a synergist for pityol in C. ponderosae on P. monticola and C. coniperda on P. strobus, but not for species of Conophthorus on any other pines tested. Conophthorus ponderosae on P. ponderosa was the only beetle–host combination tested where verbenone was a synergist for pityol, but this effect was not consistent in all years of testing. It was also the only beetle–host combination in which 4-allylanisole was a repellent. For all other beetle–host combinations, verbenone was neutral to slightly repellent and 4-allylanisole was either synergistic or neutral in pityol-baited traps. Promising synergists and interruptants/repellents were identified for implementation in pest-management regimes, including conophthorin as an interruptant for all species of Conophthorus tested, 4-allylanisole as an interruptant for C. ponderosae on P. ponderosa, α-pinene as a synergist for pityol in all species tested on Haploxylon pines, and 4-allylanisole as a synergist for pityol in C. conicolens and C. coniperda.

Résumé

Nous avons testé six substances chimiques affectant le comportement, le pityol, la conophthorine, le 4-allylanisole, la verbénone, le 2-hexenol, et l’α-pinène, au cours d’une série de tests en nature sur six combinaisons de Conophthorus Hopkins – Pinus spp. (Pinaceae) en plusieurs endroits répartis dans toute l’Amérique du Nord. Les combinaisons coléoptère – arbre-hôte ont été les suivantes : Conophthorus ponderosae Hopkins sur Pinus ponderosa Laws., C. ponderosae sur Pinus monticola Dougl., Conophthorus conicolens Wood sur Pinus pseudostrobus Lindl., Conophthorus teocotum Wood sur Pinus teocote Schl. et Cham., Conophthorus coniperda (Schwarz) sur Pinus strobus L. et Conophthorus resinosae Hopkins sur Pinus resinosa Alt. Le trans-verbénol a été testé seulement sur C. resinosae sur P. resinosa. Les pièges garnis de pityol ont capturé plus d’insectes que les pièges non garnis dans presque tous les tests et la conophthorine inhibait systématiquement la réponse des mâles au pityol chez toutes les espèces testées. La réponse de toutes les espèces de Conophthorus à l’α-pinène semble fonction de la phylogénie de l’hôte puisque les scolytes qui utilisent les pins Haploxylon comme hôtes utilisent l’α-pinène comme synergiste du pityol, alors que les scolytes qui utilisent les pins Diploxylon comme hôtes n’utilisent pas l’α-pinène. L’α-pinène a été synergiste du pityol chez C. ponderosae sur P. monticola et chez C. coniperda sur P. strobus, mais pas chez les espèces de Conophthorus testées sur d’autres espèces de pins. La combinaison de C. ponderosae sur P. ponderosa a été la seule où la verbénone a servi de synergiste au pityol, mais cet effet a varié d’une année à l’autre. Il s’agit aussi de la seule combinaison pour laquelle le 4-allylanisole avait des propriétés repoussantes. Pour toutes les autres combinaisons, la verbénone était neutre ou légèrement repoussante, et le 4-allylanisole était synergiste ou neutre dans les pièges à pityol. Les meilleurs synergistes et interrupteurs/repousseurs ont été identifiés pour être intégrés dans des programmes d’aménagement : la conophthorine, qui inhibe toutes les espèces de Conophthorus, le 4-allylanisol qui inhibe C. ponderosae sur P. ponderosa, l’α-pinène qui sert de synergiste du pityol chez toutes les espèces testées sur des pins Haploxylon, et le 4-allylanisole le synergiste du pityol chez C. conicolens et C. coniperda.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Birgersson, G.O., DeBarr, G.L., de Groot, P., Dalusky, M.J., Pierce, H.D., Borden, J.H., Meyer, H., Francke, W., Espelie, K., Berisford, C.W. 1995. Pheromones in white pine cone beetle Conophthorus coniperda (Schwarz) (Coleoptera: Scolytidae). Journal of Chemical Ecology 21: 143–67CrossRefGoogle ScholarPubMed
Borden, J.H. 1997. Disruption of semiochemical-mediated aggregation in bark beetles. pp. 421–38 in Cardé, R.T., Minks, A.K. (Eds), Insect Pheromone Research, New Directions. New York: Chapman and HallCrossRefGoogle Scholar
Borden, J.H., Chong, L.J., Savoie, A., Wilson, I.M. 1997. Responses to green leaf volatiles in two biogeoclimatic zones by striped ambrosia beetle, Trypodendron lineatum. Journal of Chemical Ecology 23: 2470–91CrossRefGoogle Scholar
Cardé, R.T., Minks, A.K. (Eds). 1997. Insect Pheromone Research, New Directions. New York: Chapman and HallCrossRefGoogle Scholar
Cibrian Tovar, D.E., Ebel, B.H., Yates, H.O. III, Mendez Montiel, J.T. 1986. Cone and seed insects of Mexican conifers. Asheville, NC: USDA Forest Service Southeastern StationGoogle Scholar
DeBarr, G.L.Barber, L.R., Maxwell, A.H. 1982. Use of carbofuran for control of eastern white pine cone and seed insects. Forest Ecology and Management 4: 118CrossRefGoogle Scholar
de Groot, P. 1986. Cone and twig beetles (Coleoptera: Scolytidae) of the genus Conophthorus: an annotated bibliography. Canadian Forest Service Information Report FPM–X–76Google Scholar
de Groot, P., DeBarr, G.L. 1998. Factors affecting capture of the white pine cone beetle, Conophthorus coniperda (Schwarz) (Col., Scolytidae) in pheromone traps. Journal of Applied Entomology 122: 281–6CrossRefGoogle Scholar
de Groot, P., DeBarr, G.L. 2000. Response of cone and twig beetles (Coleoptera: Scolytidae) and a predator (Coleoptera: Cleridae) to pityol, conophthorin, and verbenone. The Canadian Entomologist. 132: 843–51CrossRefGoogle Scholar
de Groot, P., MacDonald, M. 1999. Green leaf volatiles inhibit response of red pine cone beetle Conophthorus resinosae (Coleoptera: Scolytidae) to a sex pheromone. Naturwissenschaften 86: 81–5CrossRefGoogle Scholar
de Groot, P., Zylstra, B.F. 1995. Factors affecting capture of male red pine cone beetles, Conophthorus resinosae Hopkins (Coleoptera: Scolytidae) in pheromone traps. The Canadian Entomologist 127: 851–8CrossRefGoogle Scholar
de Groot, P., DeBarr, G.L., Birgersson, G.O., Pierce, H.D., Borden, J.H., Berisford, Y.C., Berisford, C.W. 1991. Evidence for a female-produced pheromone in the white pine cone beetle, Conophthorus coniperda (Schwarz), and in the red pine cone beetle, C. resinosae Hopkins (Coleoptera: Scolytidae). The Canadian Entomologist 123: 1057–64CrossRefGoogle Scholar
de Groot, P., DeBarr, G.L., Birgersson, G. 1998. Field bioassays of synthetic pheromones and host monoterpenes for Conophthorus coniperda (Coleoptera: Scolytidae). Environmental Entomology 27: 382–7CrossRefGoogle Scholar
Dickens, J.C., Billings, R.F., Payne, T.L. 1992. Green leaf volatiles interrupt aggregation pheromone response in bark beetles infesting southern pines. Experientia (Basel) 48: 523–4CrossRefGoogle Scholar
Hayes, J.L., Strom, B.L. 1994. 4-Allylanisol as an inhibitor of bark beetle (Coleoptera: Scolytidae) aggregation. Journal of Economic Entomology 87: 1586–94CrossRefGoogle Scholar
Hedlin, A.F., Yates, H.O. III, Cibrian Tovar, D., Ebel, B.H., Koerber, T.W., Merkel, E.P. 1980. Cone and seed insects of North American conifers. Published by Canadian Forest Service – USDA Forest Service – Secretaria de Agricultura y Recursos Hidraulicos (Mexico). [Available from the USDA Forest Service, Washington, DC]Google Scholar
Herdy, H. 1959. A method of determining the sex of adult bark beetles of the genus Conophthorus. pp. 12in Canada Department of Agriculture Biology Division Bi-Monthly Progress Report 15Google Scholar
Hoover, K., Wood, D.L., Fox, J.W., Bros, W.E. 1995. Quantitative and seasonal association of the pitch canker fungus, Fusarium subglutinans f.sp. pini, with Conophthorus radiatae (Coleoptera: Scolytidae) and Ernobius punctulatus (Coleoptera: Anobiidae) infesting Pinus radiata. The Canadian Entomologist 127: 7991CrossRefGoogle Scholar
Kinzer, H.G., Ridgill, B.J., Reeves, J.M. 1972. Response of walking Conophthorus coniperda to volatile attractants. Journal of Economic Entomology 65: 726–9CrossRefGoogle Scholar
McCullough, P., Nelder, J.A. 1989. Generalized linear models. Monographs on Statistics and Applied Probability 37Google Scholar
Millar, C.I., Kinloch, B.B. 1991. Taxonomy, phylogeny, and coevolution of pines and their stem rusts. pp. 139in Hiratska, Y., Samoil, J.K., Blenis, P.V., Crane, P.E., Laishley, B.L. (Eds), Rusts of Pines: Proceedings of the Third International Union of Forest Research Organizations Rusts of Pines Working Party Conference, 18–22 September 1989, Banff, Alberta. Forestry Canada Information Report NOR–317Google Scholar
Miller, D.R., Piercem, H.D. Jr, de Groot, P., Jean-Williams, N., Bennett, R., Borden, J.H. 2000. Sex pheromone of Conophthorus ponderosae (Coleoptera: Scolytidae) in a coastal stand of western white pine (Pinaceae). The Canadian Entomologist 132: 243–5CrossRefGoogle Scholar
Mirov, N.T. 1961. Composition of gum turpentines of pines. United States Forest Service Pacific Southwest Forest and Range Experiment Station Technical Bulletin 1239Google Scholar
Munakata, K. 1977. Insect feeding deterrents in plants. pp. 93101in Shorey, H.H., McKelvey, J.J. (Eds), Chemical control of insect behavior: theory and applications. New York: John Wiley & SonsGoogle Scholar
Perry, J.P. Jr. 1991. The pines of Mexico and Central America. Portland: Timber PressGoogle Scholar
Pierce, H.D. Jr, de Groot, P., Borden, J.H., Ramaswamy, S., Oelschlager, A.C. 1995. Pheromones in the red pine cone beetle, Conophthorus resinosae Hopkins, and its synonym, C. banksianae McPherson (Coleoptera: Scolytidae). Journal of Chemical Ecology 21: 169–85CrossRefGoogle ScholarPubMed
Price, R.A., Liston, A., Strauss, S.H. 1998. Phylogeny and systematics of Pinus. Chapter 2 in Richardson, D.M. (Ed), Ecology and biogeography of Pinus. Cambridge: Cambridge University PressGoogle Scholar
SAS Institute Inc. 1997. SAS/STAT software: changes and enhancements through release 6.12. Cary, NC: SAS Institute Inc.Google Scholar
Shea, P.J., Jenkins, M.J., Haverty, M.I. 1984. Cones of blister-rust resistant western white pine protected from Conophthorus ponderosae Hopkins (= C. monticolae Hopkins). Journal of the Georgia Entomological Society 19: 129–38Google Scholar
Smith, R.H. 1977. Monoterpenes of ponderosa pine xylem resin in western United States. United States Department of Agriculture Forest Service Technical Bulletin 1532Google Scholar
Wilson, I.M., Borden, J.H., Gries, R., Gries, G. 1996. Green leaf volatiles as antiaggregants for the mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Scolytidae). Journal of Chemical Ecology 22: 1861–75CrossRefGoogle ScholarPubMed
Wood, S.L. 1977. New synonymy and new species of American bark beetles (Coleoptera: Scolytidae), Part V. Great Basin Naturalist 37: 383–94Google Scholar