Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-28T12:31:13.187Z Has data issue: false hasContentIssue false

RESISTANCE TO INSECTICIDES IN POPULATIONS OF FRANKUNIELLA OCCIDENTALIS (PERGANDE) (THYSANOPTERA: THRIPIDAE) FROM GREENHOUSES IN THE NIAGARA REGION OF ONTARIO

Published online by Cambridge University Press:  31 May 2012

A.B. Broadbent
Affiliation:
Pest Management Research Centre, Agriculture and Agri-Food Canada, 4902 Victoria Avenue North, P.O. Box 6000, Vineland Station, Ontario, Canada L0R 2E0
D.J. Pree
Affiliation:
Pest Management Research Centre, Agriculture and Agri-Food Canada, 4902 Victoria Avenue North, P.O. Box 6000, Vineland Station, Ontario, Canada L0R 2E0

Abstract

Resistance was documented in 1995 to commonly used organophosphorus, carbamate, and pyrethroid insecticides in populations of western flower thrips, Frankliniella occidentalis (Pergande), from six commercial greenhouses in Ontario. Adult female thrips were placed in glass vials treated with technical-grade insecticides and mortality at 18 h was compared with a single discriminating concentration, the computed LC99 of a reference laboratory population. Baseline dose–response regressions for insecticides commonly used in Ontario greenhouses were obtained for the laboratory population of western flower thrips. The organophosphorus compounds chlorpyrifos and malathion and the carbamates methomyl and bendiocarb were the most toxic materials tested; whereas the pyrethroid deltamethrin and a phosphoroamidate acephate were the least toxic. The addition of piperonyl butoxide to solutions of deltamethrin was highly synergistic. The mixture of deltamethrin and endosulfan (1:1) was moderately synergistic. Populations of western flower thrips from commercial greenhouses were resistant to deltamethrin, but deltamethrin mixed with piperonyl butoxide or endosulfan was synergistic in all cases. None of the populations were resistant to all of the insecticides tested. Recommendations are presented for the development of a resistance-management strategy for western flower thrips.

Résumé

En 1995, la résistance aux insecticides organosphosphorés, carbamates et pyréthroïdes, couramment employés, a été étudiée chez des populations du Thrips des petits fruits, Frankliniella occidentalis (Pergande), dans six serres commerciales en Ontario. Des femelles adultes ont été placées dans des tubes de verre contenant des insecticides en concentrations techniques et la mortalité de ces insectes expérimentaux après 18 heures a été comparée à celle d’une population de référence exposée à une seule concentration discriminante, la concentration LC99 théorique. Des régressions entre la dose de base et la réaction ont été obtenues chez la population de laboratoire de thrips exposés aux insecticides employés couramment dans les serres d’Ontario. Les composés organophosphorés chlorpyrifos et malathion, et les carbamates methomyl et bendiocarbe, se sont avérés les substances les plus toxiques, alors que le composé pyréthroïde deltaméthrine et l’amidophosphate acéphate se sont avérés les moins toxiques. L’addition de butoxyde de pipéronyle aux solutions de deltaméthrine a eu un effet fortement synergiste. Le mélange de deltaméthrine et d’endosulfane (1 : 1) n’était que modérément synergiste. Les populations de thrips des serres commerciales étaient résistantes à la deltaméthrine, mais l’addition de butoxyde de pipéronyle ou d’endosulfane à la delta-méthrine donnait lieu à un mélange synergiste dans tous les cas. Aucune des populations n’était résistante à tous les insecticides. Nous recommandons certains protocoles propres à assurer une bonne stratégie d’aménagement tenant compte de la résistance des thrips.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, W.S. 1925. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology 18: 265267.Google Scholar
Allen, W.R., and Broadbent, A.B.. 1986. Transmission of tomato spotted wilt virus in Ontario greenhouses by Frankliniella occidentalis. Canadian Journal of Plant Pathology 8: 3338.Google Scholar
Broadbent, A.B., and Gadsby, M.. 1988. Residual toxicity of selected insecticides to adult western flower thrips. Pesticide Research Report 1988.Google Scholar
Broadbent, A.B., and Kelly, R.F.. 1987. Combined contact and residual toxicity of selected insecticides to western flower thrips. Pesticide Research Report 1987.Google Scholar
Broadbent, A.B., Allen, W.R., and Foottit, R.G.. 1987. The association of Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) with greenhouse crops and the tomato spotted wilt virus in Ontario. The Canadian Entomologist 119: 501503.Google Scholar
Brϕdsgaard, H.F. 1994. Insecticide resistance in European and African strains of western flower thrips (Thysanoptera: Thripidae) tested in a new residue-on-glass test. Journal of Economic Entomology 87: 11411146.Google Scholar
Bull, D.L., and Pryor, N.W.. 1990. In vivo and in vitro fate of fenvalerate in house flies. Pesticide Biochemistry and Physiology 38: 140152.Google Scholar
Bynum, E.D. Jr., Archer, T.L., and Plapp, F.W. Jr., 1990. Action of insecticides to spider mites (Acari:Tetranychidae) on corn in the Texas high plains: toxicity, resistance, and synergistic combinations. Journal of Economic Entomology 83: 12361242.CrossRefGoogle Scholar
De Vries, D.H., and Georghiou, G.P.. 1981. Decreased nerve sensitivity and decreased cuticular penetration as mechanisms of resistance to pyrethroids in a (IR) - trans-permethrin selected strain of the housefly. Pesticide Biochemistry and Physiology 15: 234241.Google Scholar
Forrester, N.W., Cahill, M., Bird, L.J., and Layland, J.K.. 1993. Management of pyrethroid and endosulfan resistance in Helicoverpa armigera (Lepidoptera: Noctuidae) in Australia. Bulletin of Entomological Research Supplement 1.Google Scholar
Goebel, H., Gorbach, S., Knauf, W., Rimpau, R.H., and Huttenbach, H.. 1982. Properties, effects, residues, and analytics of the insecticide Endosulfan. Residue Reviews 83: 1174.Google ScholarPubMed
Immaraju, J.A., Paine, T.D., Bethke, J.A., Robb, K.L., and Newman, J.P.. 1992. Western flower thrips (Thysanoptera: Thripidae) resistance to insecticides in coastal California greenhouses. Journal of Economic Entomology 85: 914.CrossRefGoogle Scholar
Kanga, L.H.B., and Plapp, F.W.. 1995. Development of a technique to monitor resistance to biodegradable insecticides in field populations of tobacco budworm (Lepidoptera: Noctuidae). Journal of Economic Entomology 88: 487494.CrossRefGoogle Scholar
Plapp, F.W. 1971. Insecticide resistance in Heliothis: Tolerance in larvae of H. virescens as compared with H. zea to organophosphate insecticides. Journal of Economic Entomology 64: 9991002.Google Scholar
Pree, D.J., and Daly, J.C.. 1996. Toxicity of mixtures of Bacillus thuringiensis with endosulfan and other insecticides to the cotton boll worm Helicoverpa armigera. Pesticide Science 48: 199204.3.0.CO;2-9>CrossRefGoogle Scholar
Raffa, K. F., and Priester, T. M.. 1985. Synergists as research tools and control agents in agriculture. Journal of Agricultural Entomology 2: 2745.Google Scholar
Robb, K.L. 1989. Analysis of Frankliniella occidentalis (Pergande) as a pest of floricultural crops in California greenhouses. Ph.D. dissertation, University of California, Riverside.Google Scholar
Robb, K.L., Newman, J., Virzi, J.K., and Parrella, M.P.. 1995. Insecticide resistance in western flower thrips. pp. 341346in Parker, B.L., Skinner, M., and Lewis, T. (Eds.), Thrips Biology and Management. NATO, Vol. 276, Plenum Press, New York.CrossRefGoogle Scholar
Schreiber, A.A., Knowles, C.O., and Fairchild, M.L.. 1990. Insecticide resistance in western flower thrips in Missouri. Pest Resistance Management 2: 4445.Google Scholar
Scott, J.G., and Georghiou, G.P.. 1986. Mechanisms responsible for high levels of permethrin resistance in the house fly. Pesticide Science 17: 195206.CrossRefGoogle Scholar
Sun, Y.P., and Johnson, E.R.. 1960. Analysis of joint action of insecticides against house flies. Journal of Economic Entomology 53: 887892.Google Scholar
Sun, Y.P., and Johnson, E.R.. 1972. Quasi-synergism and penetration of insecticides. Journal of Economic Entomology 65: 349353.Google Scholar
Zhao, G., Liu, W., Brown, J.M., and Knowles, C.O.. 1995 a. Insecticide resistance in field and laboratory strains of western flower thrips (Thysanoptera: Thripidae). Journal of Economic Entomology 88: 11641170.CrossRefGoogle Scholar
Zhao, G., Liu, W., and Knowles, C.O.. 1994. Mechanisms associated with diazinon resistance in western flower thrips. Pesticide Biochemistry and Physiology 49: 1323.Google Scholar
Zhao, G., Liu, W., and Knowles, C.O.. 1995 b. Fenvalerate resistance mechanisms in western flower thrips (Thysanoptera: Thripidae). Journal of Economic Entomology 88: 531535.Google Scholar
Zhao, G., Liu, W., and Knowles, C.O.. 1995 c. Mechanisms conferring resistance of western flower thrips to bendiocarb. Pesticide Science 44: 293297.Google Scholar