Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-28T09:47:08.707Z Has data issue: false hasContentIssue false

REDUCED COLD-HARDINESS OF PEAR PSYLLA (HOMOPTERA: PSYLLIDAE) CAUSED BY EXPOSURE TO EXTERNAL WATER AND SURFACTANTS

Published online by Cambridge University Press:  31 May 2012

David R. Horton
Affiliation:
USDA-ARS, 5230 Konnowac Pass Road, Wapato, Washington, USA 98951
Tamera M. Lewis
Affiliation:
USDA-ARS, 5230 Konnowac Pass Road, Wapato, Washington, USA 98951
Lisa G. Neven
Affiliation:
USDA-ARS, 5230 Konnowac Pass Road, Wapato, Washington, USA 98951

Abstract

Overwintering pear psylla, Cacopsylla pyricola (Foerster), were misted with water or with one of several dilute solutions of water and surfactant, and then exposed to a range of subzero temperatures for 24 h. Misted psylla had significantly greater mortality than unmisted controls. Increases in mortality occurred at temperatures as warm as −6°C, a temperature well within the range of conditions in the field. At extreme low temperatures (−18°C) there was virtually no mortality in the unmisted controls, whereas mortality approached or reached 100% in several of the misted groups. Temperatures necessary to kill 50% of insects estimated for topically treated psylla ranged between −2.6 and −12.7°C for surfactant-treated insects, and below −18°C for water-treated or control insects. The possibility of using surfactants and water for control of overwintering pear psylla is discussed.

Résumé

Des Psylles du poirier, Cacopsylla pyricola (Foerster), ont été vaporisées au cours de l’hiver, d’eau, ou alors d’une ou plusieurs solutions aqueuses de surfactants, puis exposées à une gamme de températures sous zéro durant 24 h. Les psylles vaporisées avaient des taux de mortalité plus élevés que les psylles témoins non vaporisées. L’augmentation de la mortalité a été constatée des températures pourtant assez élevées, jusqu’à −6°C, une température plus élevée que les températures minimales prévalant en nature. A température très froide (−18°C) la mortalité a été presque nulle chez les insectes témoins, alors qu’elle avoisinait 100% chez plusieurs des groupes vaporisés. Les températures nécessaires pour tuer 50% des insectes chez les psylles traitées par vaporisation se situaient entre −2,6 et −12,7°C dans le cas des insectes traités aux surfactants, et sous −18 °C chez les insectes vaporisés à l’eau et les insectes témoins. La possibilité de recourir à une vaporisation à l’eau et aux surfactants dans la lutte aux Psylles du poirier pendant l’hiver est examinée.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bale, J.S. 1980. Seasonal variation in cold hardiness of the adult beech leaf mining weevil Rhynchaenus fagi L. in Great Britain. Cryo-Letters 1: 372383.Google Scholar
Bale, J.S. 1991. Implications of cold hardiness for pest management. pp. 461–498 in Lee, R.E. Jr., and Denlinger, D.L. (Eds.), Insects at Low Temperatures. Chapman and Hall, New York, NY. 513 pp.Google Scholar
Griffiths, E., and Wratten, S.D.. 1979. Intra- and inter-specific differences in cereal aphid low-temperature tolerance. Entomologia experimentalis et applicata 26: 161167.CrossRefGoogle Scholar
Krysan, J.L. 1990. Fenoxycarb and diapause: A possible method of control for pear psylla (Homoptera: Psyllidae). Journal of Economic Entomology 83: 293299.CrossRefGoogle Scholar
Krysan, J.L., and Higbee, B.S.. 1990. Seasonality of mating and ovarian development in overwintering Cacopsylla pyricola (Homoptera: Psyllidae). Environmental Entomology 19: 551557.Google Scholar
Larsen, K.J., and Lee, R.E. Jr., 1994. Cold tolerance including rapid cold-hardening and inoculative freezing of fall migrant monarch butterflies in Ohio. Journal of Insect Physiology 40: 859864.CrossRefGoogle Scholar
O'Doherty, R., and Bale, J.S.. 1985. Factors affecting the cold hardiness of the peach-potato aphid Myzus persicae. Annals of Applied Biology 106: 219228.Google Scholar
Oldfield, G.N. 1970. Diapause and polymorphism in California populations of Psylla pyricola (Homoptera: Psyllidae). Annals of the Entomological Society of America 63: 180184.CrossRefGoogle Scholar
Salt, R.W. 1963. Delayed inoculative freezing of insects. The Canadian Entomologist 95: 11901202.CrossRefGoogle Scholar
SAS Institute. 1987. SAS/STAT Guide for Personal Computers. Version 6 Edition. Cary, NC. 1028 pp.Google Scholar
Westigard, P.H., and Zwick, R.W.. 1972. The Pear Psylla in Oregon. Oregon Agricultural Experiment Station Technical Bulletin 122: 22 pp.Google Scholar