Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-12-01T01:20:04.978Z Has data issue: false hasContentIssue false

QUANTITATIVE AND SEASONAL ASSOCIATION OF THE PITCH CANKER FUNGUS, FUSARIUM SUBGLUTINANS F. SP. PINI WITH CONOPHTHORUS RADIATAE (COLEOPTERA: SCOLYTIDAE) AND ERNOBIUS PUNCTULATUS (COLEOPTERA: ANOBIIDAE) WHICH INFEST PINUS RADIATA

Published online by Cambridge University Press:  31 May 2012

Kelli Hoover
Affiliation:
Department of Entomology, University of California, Davis, California, USA 95616
David L. Wood*
Affiliation:
Department of Environmental Science, Policy and Management, University of California, Berkeley, California, USA 94720
Joseph W. Fox
Affiliation:
Department of Environmental Science, Policy and Management, University of California, Berkeley, California, USA 94720
William E. Bros
Affiliation:
Department of Biological Sciences, San Jose State University, San Jose, California, USA 95192
*
1Author to whom reprint requests should be addressed.

Abstract

The objective of this study was to determine the quantitative and seasonal association between the pitch canker fungus, Fusarium subglutinans f. sp. pini, and two potential beetle vectors, Conophthorus radiatae Hopkins and Ernobius punctulatus Fall. In samples of reared and dissected cones, 21.4 ± 2.5% of C. radiatae and 30.1 ± 8.0% of E. punctulatus adults carried propagules of F. s. pini. Seasonal variation in mean percentage of contaminated C. radiatae and E. punctulatus emerged from cones ranged from 0 to 67% and was highest for both species February through April. In sticky traps 12.5 ± 2.3% and 11.8 ± 3.6% of E. punctulatus and Pityophthorus spp., respectively, were contaminated with propagules of F. s. pini.

Conophthorus radiatae and E. punctulatus co-occurred in 26% of the cones. The percentage of cones containing contaminated C. radiatae was greater when E. punctulatus progeny were also contaminated than when E. punctulatus was not. When contamination status of E. punctulatus was not considered, there was no significant difference in C. radiatae contamination between cones with and without E. punctulatus. Because C. radiatae appears to be a vector of the pitch canker fungus, interspecific transmission of inoculum may increase the incidence of this disease.

The parasitoid, Cephalonomia utahensis Brues (Hymenoptera: Bethylidae), was frequently observed parasitizing late-instar larvae of E. punctulatus, but was not found on larvae of C. radiatae. Emergence of large numbers of C. utahensis represents another potential source of inoculum for transmission to prey species.

Résumé

Nous avons tenté de déterminer l’association quantitative et saisonnière qui existe entre le chancre fusarien Fusarium subglutinans f. sp. pini et deux coléoptères vecteurs potentiels de la maladie, Conophthorus radiatae Hopkins et Ernobius punctulatus Fall. L’examen de cônes gardés jusqu’à maturité et de cônes disséqués a révélé que 21,4 ± 2,5% des adultes de C. radiatae et 30,1 ± 8,0% des adultes d’E. punctulatus portaient des propagules du champignon. La variation saisonnière du pourcentage moyen des coléoptères contaminés sortis des cônes se situait entre 0 et 67% et c’est de février à avril qu’elle était le plus élevée chez les deux espèces. Dans des pièges collants, 12,5 ± 2,3% des E. punctulatus et 11,8 ± 3,6% des Pityophthorus spp. capturés étaient contaminés.

Conophthorus radiatae et E. punctulatus cohabitaient des 26% des cônes. Le pourcentage de cônes contenant des C. radiatae contaminés était plus élevé lorsque la progéniture d’E. punctulatus était contaminée aussi. Lorsque la contamination d’E. punctulatus n’était pas prise en considération, il n’y avait pas de variation significative de la contamination des C. radiatae entre les cônes qui contenaient des E. punctulatus et deux qui n’en contenaient pas. Comme C. radiatae semble être un vecteur de la maladie, la transmission interspécifique de l’inoculum peut augmenter les chances de propagation de la maladie.

Le parasitoïde Cephalonomia utahensis Brues (Hymenoptera : Bethylidae) a souvent été observé chez les larves des derniers stades d’E. punctulatus mais jamais chez les larves de C. utahensis représente une autre source potentielle d’inoculum transmissible aux autres espèces de proies.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, D. 1989. Incidence of Pine Pitch Canker in California. California Department of Forestry and Fire Protection. 25 pp.Google Scholar
Barrows-Broaddus, . 1987. Pitch Canker. pp. 4249in Sutherland, J.R., Miller, T., and Quinnard, R.S. (Eds.), Cone and Seed Diseases of North American Conifers. North American Forestry Commission, Publication 1. Victoria B.C., Canada.Google Scholar
Blakeslee, G.M., Miller, T., and Barnard, E.L.. 1981. Pitch Canker in Forest Tree Nurseries. USDA Forest Service Forestry Bulletin SA–FB/P 22:1 p.Google Scholar
Blakeslee, G.M., Oak, S.W., Gregory, W., and Moses, C.S.. 1978. Natural association of Fusarium moniliforme var. subglutinans with Pissodes nemorensis. Phytophathology News 12: 208. [Abstr.]Google Scholar
Cibrian-Tovar, D., Ebel, B.H., Yates, H.O. III, and Mendez-Montiel, J.T.. 1986. Cone and Seed Insects of the Mexican Conifers. USDA Forest Service Southeastern Station, Ashville, NC. 110 pp.Google Scholar
Correll, J.C., Gordon, T.R., and McCain, A.H.. 1992. Examination of genetic diversity in California and Florida populations of Fusarium subglutinans f. sp. pini. Phytopathology 82: 415420.CrossRefGoogle Scholar
Correll, J.C., Gordon, T.R., McCain, A.H., Fox, J.W., Koehler, C.S., Wood, D.L., and Schultz, M.E.. 1991. Pitch canker in California: Pathogenicity, distribution, and canker development on Monterey pine (Pinus radiata). Plant Disease 75: 676682.Google Scholar
Dallara, P.L. 1993. Interrelationships among twig beetles (Scolytidae: Pityophthorus spp.), pitch canker disease and conifers in central coastal California. p. 44in Adams, D.H., Rios, J.E., and Storer, A.J. (Eds.), Proceedings of the 42nd Annual Meeting of the California Forest Pest Council. Rancho Cordova, CA, Nov. 17–18, 1993. Appendix XLIV–XLV.Google Scholar
Dwinell, L.D., Barrows-Broaddus, J.B., and Kulman, E.G.. 1985. Pitch canker: A disease complex of southern pines. Plant Disease 69: 270276.Google Scholar
Fox, J.W., Wood, D.L., Koehler, C.S., and O'Keefe, S.T.. 1991. Engraver beetles (Scolytidae: Ips species) are capable of vectoring the pitch canker fungus, Fusarium subglutinans. The Canadian Entomologist 123: 13551367.CrossRefGoogle Scholar
Furniss, R.L., and Carolin, V.M.. 1977. Western Forest Insects. USDA Forest Service Miscellaneous Publication 1339: 654 pp.Google Scholar
Hedlin, A.F., and Strickland, W.G.. 1959. An anobiid, Ernobius punctulatus Lec., in cones of Douglas-fir. Canadian Department of Agriculture, Forest Biology Division, Bi-monthly Progress Report 15 (5): 3.Google Scholar
Hedlin, A.F., Yates, H.O. III, Tovar, D.C., Ebel, B.H., Koerber, T.W., and Merkel, E.P.. 1981. Cone and Seed Insects of North American Conifers. Canadian Forestry Service, U.S. Forest Service. 122 pp.Google Scholar
Hepting, G.H., and Roth, E.R.. 1953. Host relations and spread of the pine pitch canker disease. Phytopathology 43: 475. [Abstr.]Google Scholar
Matthews, F.R. 1962. Pitch canker-tip moth damage association on slash pine seedlings. Journal of Forestry 60: 825826.Google Scholar
McCain, A.H., Koehler, C.S., and Tjosvold, S.A.. 1987. Pitch canker threatens California pines. California Agriculture 41(11): 2223.Google Scholar
McGraw, J.R., Wilkinson, R.C., Schmidt, R.A., and Underhill, E.M.. 1970. Tip Moths and Pitch Canker in Florida. Institute of Food & Agriculture Report, University of Florida 76–1–2: 2 pp.Google Scholar
Roux, G., and Roques, A.. 1995. Parental and genotype effect on prolonged diapause in the Douglas-fir seed chalcid, Megastigmus spermatrophus Wachtl. In DeBarr, G.L., Roques, A., Sun, J.H., and Turgeon, J.J. (Eds.), Proceedings of Cone and Seed Insect Working Party Conference (IUFRO S2.07-01), 4th Bejing and Harbin, 1992. USDA Forest Service Southeastern Forest Experiment Station, Athens, GA. In press.Google Scholar
Ruckes, H. Jr., 1956. A bethylid parasite of cone beetles. Pan Pacific Entomologist 32: 184185.Google Scholar
Ruckes, H. Jr., 1958. Some observations on the Monterey pine cone beetle, Conophthorus radiatae Hopkins (Coleoptera: Scolytidae). Annals of Entomological Society of America 51(2): 214215.Google Scholar
Sahota, T.S., and Ibaraki, A.. 1991. 1- and 2-year dormancy of the Douglas-fir cone moth, Barbara colfaxiana Kft. (Lepidoptera: Olethreutidae): Possible relation to individual weights. The Canadian Entomologist 123: 11531155.CrossRefGoogle Scholar
Schaefer, C.H. 1962. Life history of Conophthorus radiatae (Coleoptera: Scolytidae) and its principal parasite, Cephalonomia utahensis (Hymenoptera: Bethylidae). Annals of Entomological Society of America 55(5): 569577.Google Scholar
Southwood, T.R.E. 1966. Ecological Methods with Particular Reference to the Study of Insect Populations, 2nd ed. Chapman and Hill, London. 524 pp.Google Scholar
Storer, A.J., Gordon, T.R., Wood, D.L., and Dallara, P.L.. 1995. Entomological and pathological aspects of pitch canker disease. Proceedings International Union Forestry Research Organizations, Maui, HI. In press.Google Scholar
Turgeon, J.J., Roques, A., and De Groot, P.. 1994. Insect fauna of coniferous seed cones: Diversity, host plant interactions, and management. Annual Review of Entomology 39: 179212.Google Scholar
Wood, S.L. 1982. Great Basin Naturalist Memoirs: The Bark and Ambrosia Beetles of North and Central America (Coleoptera: Scolytidae) a Taxonomic Monograph. Brigham Young University, Provo, UT. 1359 pp.Google Scholar
Zar, J.H. 1984. Biostatistical Analysis. Prentice-Hall, Inc., Englewood Cliffs, NJ. 718 pp.Google Scholar