Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-12-01T00:02:14.277Z Has data issue: false hasContentIssue false

A PROCESS-ORIENTED MODEL OF SPRUCE BUDWORM PHENOLOGY (LEPIDOPTERA: TORTRICIDAE)

Published online by Cambridge University Press:  31 May 2012

Jacques Régnière
Affiliation:
Canadian Forestry Service, Great Lakes Forest Research Centre, Sault Ste. Marie, Ontario P6A 5M7

Abstract

In this paper a process-oriented model of spruce budworm phenology is developed which produces simulations comparing favorably with observed phenological trends taken from literature. Major features of this model include: (1) non-linear descriptions of temperature-dependent development of larval instars and pupal stadium; (2) three sources of variability in development rates (intrinsic, sex-related, and microclimatic); and (3) generation of daily temperature cycles for four microhabitats from input min-max air temperature data.

Résumé

Un modèle des processus menant au développement phénologique de la tordeuse des bourgeons de l'épinette est décrit. Les résultats sont comparés favorablement à des données tirées de la littérature. Trois principales caractéristiques distinguent ce modèle : (1) les relations température-développement sont décrites par des équations curvilinéaires de haute précision pour les stades larvaires ainsi que pour les pupes; (2) trois sources de variation des taux de développement y sont considérées (intrinsèque, sexuelle, et microclimatique); et (3) les cycles journaliers de température sont produits, pour quatre microhabitats, à partir d'entrées de températures minimum et maximum journalières.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bean, J. I. 1961. Predicting emergence of second-instar spruce budworm larvae from hibernation under field conditions in Minnesota. Ann. ent. Soc. Am. 54: 175177.CrossRefGoogle Scholar
Bean, J. I. and Wilson, L. F.. 1964. Comparing various methods of predicting development of the spruce budworm Choristoneura fumiferana, in northern Minnesota. J. econ. Ent. 57: 925928.CrossRefGoogle Scholar
Cameron, D. G., McDougall, G. A., and Bennett, C. W.. 1968. Relation of spruce budworm development and balsam fir shoot growth to heat units. J. econ. Ent. 61: 857858.CrossRefGoogle Scholar
Howse, G. M., Sanders, C. J., Harnden, A. A., Cunningham, J. C., Bird, F. T., and McPhee, J. R.. 1973. Aerial application of viruses against spruce budworm, 1971. Dep. Environ., Can. For. Serv., Sault Ste. Marie, Ont. Inf. Rep. O-X-189. 62 pp. + Append.Google Scholar
Logan, J. A., Wollkind, D. J., Hoyt, S. C., and Tanigoshi, L. K.. 1976. An analytic model for the description of temperaturedependent rate phenomena in arthropods. Environ. Ent. 5: 11331140.CrossRefGoogle Scholar
Logan, J. A., Stinner, R. E., and Bacheler, J. S.. 1979. A descriptive model for predicting spring emergence of Heliothis zea populations in North Carolina. Environ. Ent. 8: 141146.CrossRefGoogle Scholar
Miller, C. A., Eidt, D. C., and McDougall, G. A.. 1971. Predicting spruce budworm development. Dep. Environ., Can. For. Serv., Ottawa, Ont. Bi-mon. Res. Notes 27: 3334.Google Scholar
Miller, C. A., and Kettela, E. G.. 1972. An additional note on sampling spruce budworm larvae. Dep. Environ., Can. For. Serv., Fredericton, N.B. Inf. Rep. M-X-34.Google Scholar
Régnière, J., Rabb, R. L., and Stinner, R. E.. 1981. Popillia japonica: simulation of temperature-dependent development of the immatures, and prediction of adult emergence. Environ. Ent. 10: 290296.CrossRefGoogle Scholar
Rose, A. H. and Blais, J. R.. 1954. A relation between April and May temperatures and spruce budworm larval emergence. Can. Ent. 86: 174177.CrossRefGoogle Scholar
Sharpe, P. J. H. and DeMichele, D. W.. 1977. Reaction kinetics of poikilotherm development. J. theor. Biol. 64: 649670.CrossRefGoogle ScholarPubMed
Shepherd, R. F. 1958. Factors controlling the internal temperatures of spruce budworm larvae, Choristoneura fumiferana (Clem.). Can. J. Zool. 36: 779786.CrossRefGoogle Scholar
Stinner, R. E., Butler, G. D. Jr., Bacheler, J. S., and Tuttle, C.. 1975. Simulation of temperature-dependent development in population dynamics models. Can. Ent. 107: 11671174.CrossRefGoogle Scholar
Wellington, W. G. 1949. The effects of temperature and moisture upon the behavior of the spruce budworm, Choristoneura fumiferana Clemens. (Lepidoptera: Tortricidae). I: The relative importance of graded temperatures and rates of evaporation in producing aggregations of larvae. Scient. Agric. 29: 201229.Google Scholar
Wellington, W. G. 1950. Effects of radiation on the temperatures of insectan habitats. Scient. Agric. 30: 209234.Google Scholar