Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-28T07:21:08.361Z Has data issue: false hasContentIssue false

PREDICTING WESTERN CORN ROOTWORM BEETLE (COLEOPTERA: CHRYSOMELIDAE) EMERGENCE FROM THE SOIL USING SOIL OR AIR TEMPERATURE

Published online by Cambridge University Press:  31 May 2012

N.C. Elliott
Affiliation:
Northern Research Service, U.S. Department of Agriculture, Brookings, South Dakota, USA 57006
J.J. Jackson
Affiliation:
Northern Research Service, U.S. Department of Agriculture, Brookings, South Dakota, USA 57006
R.D. Gustin
Affiliation:
Northern Research Service, U.S. Department of Agriculture, Brookings, South Dakota, USA 57006

Abstract

A temperature-dependent multiple cohort simulation model was used to predict emergence of western corn rootworms, Diabrotica virgifera virgifera LeConte, from the soil. Hourly 10-cm-depth soil temperatures were used as input to the model. Hourly soil temperatures were predicted from daily minimum and maximum 10-cm-depth soil temperatures using a half-sine-wave approximation, or from minimum and maximum daily 1-m-height air temperatures using a model for predicting soil temperature from air temperature. The mean difference in the number of days between predicted and observed 50% emergence was 0.22 days using soil temperatures and 0.00 days using air temperatures. Linear regressions of predicted versus observed Julian dates of 10, 50, and 90% cumulative beetle emergence from the soil indicated that model predictions were reasonably accurate and precise using both soil and air temperatures.

Résumé

Un modèle de simulation de cohortes multiples dépendantes de la température a été utilisé pour prédire l’éclosion du sol de la chrysomèle occidentale des racines de maïs, Diabrotica virgifera virgifera. Les températures du sol à toutes les heures, à une profondeur de 10 cm, ont été utilisées comme entrées au modèle. La température de chaque heure a été prédite en utilisant les températures quotidiennes minimums et maximums à une profondeur du sol de 10 cm et une approximation de l’onde demi-sinusoïdale, ou à partir des températures quotidiennes minimums et maximums de l’air à une hauteur de 1 m, en utilisant un modèle pour prédire les températures du sol à partir des températures de l’air. La différence moyenne entre nombre de jours prédit et nombre de jours aperçu pour l’éclosion à 50% des chrysomèles a été 0,22 jours quand la température du sol a été utilisée et de 0,00 jours pour la température de l’air. Les régressions linéaires entre dates Juliennes prédites et observées pour 10, 50 et 90% d’éclosions du sol cumulatives des chrysomèles ont signalés que les prédictions du modèle ont été raisonnablement justes et précises soit en utilisant les températures du sol, soit en utilisant les températures de l’air.

Type
Research Article
Copyright
Copyright © Entomological Society of Canada 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

Current address: USDA, ARS, SPA, Plant Science and Water Conservation Research Laboratory, 1301 N. Western Rd., Stillwater, Oklahoma, USA 74075.

References

Bergman, M.K., and Turpin, F.T.. 1986. Phenology of field populations of corn rootworms (Coleoptera: Chrysomelidae) relative to calendar date and heat units. Environ. Ent. 15: 109112.10.1093/ee/15.1.109CrossRefGoogle Scholar
Branson, T.F. 1976. Variability and hatching pattern of eggs of the western corn rootworm exposed to chill periods of different durations. Entomologia exp. appl. 19: 7781.10.1111/j.1570-7458.1976.tb02583.xCrossRefGoogle Scholar
Branson, T.F. 1987. The contribution of prehatch and posthatch development to protandry in the chrysomelid, Diabrotica virgifera virgifera. Entomologia exp. appl. 43: 205208.10.1111/j.1570-7458.1987.tb02210.xCrossRefGoogle Scholar
Branson, T.F., and Ortman, E.E.. 1970. The host range of larvae of the western corn rootworm: further studies. J. econ. Ent. 63: 800803.10.1093/jee/63.3.800CrossRefGoogle Scholar
Campbell, A.B., Frazer, B.D., Gilbert, N., Gutierrez, A.P., and Mackauer, M.M.. 1974. Temperature requirements of some aphids and their parasites. J. appl. Ecol. 11: 431438.10.2307/2402197CrossRefGoogle Scholar
Chiang, H.C. 1973. Bionomics of the northern and western corn rootworms. A. Rev. Ent. 18: 4772.10.1146/annurev.en.18.010173.000403CrossRefGoogle Scholar
Chiang, H.C., and Sisson, V.. 1968. Temperature relationships of the development of corn rootworm eggs. J. econ. Ent. 61: 14061410.10.1093/jee/61.5.1406CrossRefGoogle Scholar
Curry, G.L., and Feldman, R.M.. 1987. Mathematical Foundations of Population Dynamics. Texas A&M Univ. Press, College Station.Google Scholar
Fisher, J.R. 1984. Comparison of emergence of Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae) from cut and uncut corn plants in artificial and natural infestations. J. Kansas ent. Soc. 57: 405408.Google Scholar
Fisher, J.R. 1986. Development and survival of pupae of Diabrotica virgifera virgifera and D. undecimpunctata howardi (Coleoptera: Chrysomelidae) at constant temperatures and humidities. Environ. Ent. 15: 626630.10.1093/ee/15.3.626CrossRefGoogle Scholar
Fisher, J.R. 1989. Hatch of Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae) eggs exposed to two different overwintering and hatch regimes. J. Kansas ent. Soc. 62: 607610.Google Scholar
Gupta, S.C., Larson, W.E., and Linden, D.R.. 1983. Tillage and surface residue effects on soil upper boundary temperature. Soil Sci. Soc. Am. J. 47: 12121218.10.2136/sssaj1983.03615995004700060030xCrossRefGoogle Scholar
Gupta, S.W., Larson, W.E., and Allmaras, R.R.. 1984. Predicting soil temperature and soil heat flux under different tillage-surface residue conditions. Soil Sci. Soc. Am. J. 48: 223232.10.2136/sssaj1984.03615995004800020001xCrossRefGoogle Scholar
Jackson, J.J. 1986. Rearing and handling of Diabrotica virgifera and Diabrotica undecimpunctata howardi. pp. 2547 in Krysan, J.L., and Miller, T.A. (Eds.), Methods for the Study of Pest Diabrotica. Springer, New York.10.1007/978-1-4612-4868-2_2CrossRefGoogle Scholar
Jackson, J.J., and Elliott, N.C.. 1988. Temperature-dependent development of immature stages of the western corn rootworm, Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae). Environ. Ent. 17: 166171.10.1093/ee/17.2.166CrossRefGoogle Scholar
Mooney, E., and Turpin, F.T.. 1976. ROWSIM, a GASP IV based rootworm simulator. Purdue Univ. Agric. Exp. Stn. Res. Bull. 938.Google Scholar
SAS Institute. 1985. SAS User's Guide Statistics. SAS Institute, Cary, NC.Google Scholar
Shaffer, M.J., Gupta, S.C., Linden, D.R., Molina, J.A.E., Clapp, C.E., and Larson, W.E.. 1983. Simulation of nitrogen, tillage, and residue management effects on soil fertility. In Third International Conference on State-of-the-Art in Ecological Modelling. Colorado State Univ., Ft. Collins.Google Scholar
Stinner, R.E., Butler, G.D. Jr., Bacheler, J.S., and Tuttle, C.. 1975. Simulation of temperature-dependent development in population dynamics models. Can. Ent. 107: 11671174.10.4039/Ent1071167-11CrossRefGoogle Scholar
Sutter, G.R., and Branson, T.F.. 1986. Artificial infestation of field plots. pp. 147157 in Krysan, J.L., and Miller, T.A. (Eds.), Methods for the Study of Pest Diabrotica. Springer, New York.10.1007/978-1-4612-4868-2_8CrossRefGoogle Scholar
Wilde, G.E. 1971. Temperature effect on development of western corn rootworm eggs. J. Kansas ent. Soc. 44: 185187.Google Scholar