Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-06T09:10:09.540Z Has data issue: false hasContentIssue false

Population structure and phylogenetic relationships of Ceutorhynchus neglectus (Coleoptera: Curculionidae)

Published online by Cambridge University Press:  02 April 2012

R. D. Laffin*
Affiliation:
Department of Biological Sciences, ESB 2-08 Earth Sciences Centre, University of Alberta, Edmonton, Alberta, Canada T6G 2E9
L. M. Dosdall
Affiliation:
Department of Agricultural, Food and Nutritional Science, 4-10 Agriculture/Forestry Centre, University of Alberta, Edmonton, Alberta, Canada T6G 2P5
F.A.H. Sperling
Affiliation:
Department of Biological Sciences, ESB 2-08 Earth Sciences Centre, University of Alberta, Edmonton, Alberta, Canada T6G 2E9
*
1 Corresponding author (e-mail: [email protected]).

Abstract

Ceutorhynchus neglectus Blatchley is a weevil that is native to, and widely distributed in, North America. It has life-history characteristics similar to its alien invasive congener, Ceutorhynchus obstrictus (Marsham), the cabbage seedpod weevil. Our study was undertaken to compare the population structure of C. neglectus in North America to that of C. obstrictus, which, in contrast, was introduced only recently to North America and might be expected to have a simpler population structure. We also compared the population structure of C. neglectus to that of Pissodes strobi (Peck), which is known to possess high levels of intraspecific variation and is also a Nearctic weevil. We sequenced a 790-bp fragment of mtDNA (cytochrome oxidase I (COI) gene) and a 117-bp fragment of nuclear DNA (internal transcribed spacer region 1 (ITS1)). Nested clade analysis inferred contiguous range expansion and restricted gene flow with isolation by distance. Analysis of molecular variance also supported restricted gene flow between geographically distant populations. However, within-species variation in C. neglectus was lower than that for other weevil species including C. obstrictus. We also examined DNA divergences and phylogenetic relationships among 10 species of Ceutorhynchus using parsimony analysis of a 2.3-kb fragment of mtDNA (COI–COII) and a 541-bp fragment of nuclear DNA (elongation factor 1α).

Résumé

Ceutorhynchus neglectus Blatchley est un charançon indigène à l'Amérique du Nord où il a une grande répartition géographique. Les caractéristiques de son cycle biologique ressemblent à celles de son congénère exotique et envahissant, Ceutorhynchus obstrictus (Marsham), le charançon de la silique. Notre étude veut comparer la structure de population de C. neglectus en Amérique du Nord à celle de C. obstrictus qui doit vraisemblablement avoir une structure de population plus simple, car il n'a été introduit que récemment en Amérique du Nord. Nous avons aussi comparé la structure de population de C. neglectus à celle de Pissodes strobi (Peck) qui est bien caractérisé par une forte variation intraspécifique et qui est aussi une espèce néarctique. Nous avons séquencé un fragment de 790 pb d'ADNmt (le gène de la cytochrome C oxydase, COI) et un fragment de 117 pb d'ADN nucléaire (l'espaceur interne transcrit 1, ITS1). Une analyse cladistique emboîtée indique une expansion de l'aire de répartition par contiguïté et un flux génique restreint par l'isolement relié à la distance. Une analyse AMOVA confirme aussi le flux génique restreint entre les populations éloignées géographiquement. Cependant, la variation intraspécifique chez C. neglectus est plus faible que chez les autres charançons, y compris C. obstrictus. Nous avons aussi examiné les divergences de l'ADN et les relations phylogénétiques chez 10 espèces de Ceutorhynchus par une analyse de parcimonie d'un fragment de 2,3 kb d'ADNmt (COI–COII) et d'un fragment de 541 pb d'ADN nucléaire (le facteur d'élongation 1α).

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abe, T.A., Spence, J.R., and Sperling, F.A.H. 2005. Mitochondrial introgression is restricted relative to nuclear markers in a water strider (Hemiptera: Gerridae) hybrid zone. Canadian Journal of Zoology, 83: 432444.CrossRefGoogle Scholar
Althoff, D.M., and Pellmyr, O. 2002. Examining genetic structure in a bogus yucca moth: a sequential approach to phylogeography. Evolution, 56: 16321643.Google Scholar
Anderson, R.S. 1997. Weevils (Coleoptera: Curculionoidea, excluding Scolytinae and Platypodinae) of the Yukon. In Insects of the Yukon. Edited by Danks, H.V. and Downes, J.A.. Biological Survey of Canada (Terrestrial Arthropods), Ottawa, Ontario. pp. 523562.Google Scholar
Avise, J.C. 2000. Phylogeography: the history and formation of species. Harvard University Press, Cambridge, Massachusetts.CrossRefGoogle Scholar
Best, K.F. 1977. The biology of Canadian weeds. 22. Descurainia sophia (L.) Webb. Canadian Journal of Plant Science, 57: 499507.CrossRefGoogle Scholar
Blatchley, W.S., and Leng, C.W. 1916. Rhynchophora or weevils of North Eastern America. Nature Publishing Company, Indianapolis, Indiana.Google Scholar
Bogdanowicz, S.M., Wallner, W.E., Bell, J., O'Dell, T.M., and Harrison, R.G. 1993. Asian gypsy moths (Lepidoptera: Lymantriidae) in North America: evidence from molecular data. Annals of the Entomological Society of America, 86: 710715.CrossRefGoogle Scholar
Brown, W.M., George, M. Jr., and Wilson, A.C. 1979. Rapid evolution of animal mitochondrial DNA. Proceedings of the National Academy of Sciences of the United States of America, 76: 19671971.CrossRefGoogle ScholarPubMed
Caterino, M.S., and Sperling, F.A.H. 1999. Papilio phylogeny based on mitochondrial cytochrome oxidase I and II genes. Molecular Phylogenetics and Evolution, 11: 122137.CrossRefGoogle ScholarPubMed
Caterino, M.S., Reed, R.D., Kuo, M.M., and Sperling, F.A.H. 2001. A partitioned likelihood analysis of swallowtail butterfly phylogeny (Lepidoptera: Papilionidae). Systematic Biology, 50: 106127.CrossRefGoogle ScholarPubMed
Cho, A., Mitchell, A., Regier, J.C., Mitter, C., Poole, R.W., Friedlander, T.P., and Zhao, S. 1995. A highly conserved nuclear gene for low-level phylogenetics: elongation factor 1a recovers morphology-based tree for heliothine moths. Molecular Biology and Evolution, 12: 650656.Google Scholar
Clark, A.G. 1990. Inference of haplotypes from PCR-amplified samples of diploid populations. Molecular Biology and Evolution, 2: 111122.Google Scholar
Clary, D.O., and Wolstenholme, D.R. 1985. The mitochondrial DNA molecule of Drosophila yakuba: nucleotide sequence, gene organization, and genetic code. Journal of Molecular Evolution, 22: 252271.CrossRefGoogle ScholarPubMed
Clement, M., Derington, J., and Posada, D. 2004. TCS: estimating gene genealogies. Version 1.18. Brigham Young University, Provo, Utah.Google Scholar
Collins, F.H., and Paskewitz, S.M. 1998. A review of the use of ribosomal DNA (rDNA) to differentiate among cryptic Anopheles species. Insect Molecular Biology, 5: 19.CrossRefGoogle Scholar
Colonnelli, E. 2004. Catalogue of Ceutorhynchinae of the World, with a key to genera (Insecta: Coleoptera: Curculionidae). Pensoft Publishers, Barcelona, Spain.Google Scholar
Dosdall, L.M., and Moisey, D.W.A. 2004. Developmental biology of the cabbage seedpod weevil, Ceutorhynchus obstrictus (Coleoptera: Curculionidae), in spring canola, Brassica napus, in western Canada. Annals of the Entomological Society of America, 97: 458465.CrossRefGoogle Scholar
Dosdall, L.M., McFarlane, M.A., and Palaniswamy, P. 1999. Biology and larval morphology of Ceutorhynchus neglectus (Coleoptera: Curculionidae), a minor pest of canola (Brassicaceae) in western Canada. The Canadian Entomologist, 131: 231242.CrossRefGoogle Scholar
Dupanloup, I., Schneider, S., and Excoffier, L. 2002. A simulated annealing approach to define the genetic structure of populations. Molecular Ecology, 11: 25712581.CrossRefGoogle ScholarPubMed
Excoffier, L., Smouse, P.E., and Quattro, J.M. 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics, 131: 479491.CrossRefGoogle ScholarPubMed
Gallego, G., and Galian, J. 2001. The internal transcribed spacers (ITS1 and ITS2) of the rDNA differentiates the bark beetle forest pests Tomicus destruens and T. piniperda. Insect Molecular Biology, 10: 415420.CrossRefGoogle ScholarPubMed
Gene Codes Corporation. 2001. Sequencher. Version 4.1 [computer program]. Gene Codes Corporation, Ann Arbor, Michigan.Google Scholar
Jordal, B.H., Normark, B.B., and Farrell, B.D. 2000. Evolutionary radiation of an inbreeding haplodiploid beetle lineage (Curculionidae, Scolytinae). Biological Journal of the Linnean Society, 71: 483499.CrossRefGoogle Scholar
Laffin, R.D., Langor, D.W., and Sperling, F.A.H. 2004. Population structure and gene flow in the white pine weevil, Pissodes strobi (Coleoptera: Curculionidae). Annals of the Entomological Society of America, 97: 949956.CrossRefGoogle Scholar
Laffin, R.D., Dosdall, L.M., and Sperling, F.A.H. 2005. Population structure of the cabbage seedpod weevil, Ceutorhynchus obstrictus (Marsham) (Coleoptera: Curculionidae): Origins of North American introductions. Environmental Entomology, 34: 504510.CrossRefGoogle Scholar
Langor, D.W., and Sperling, F.A.H. 1997. Mitochondrial DNA sequence divergence in weevils of the Pissodes strobi species complex (Coleoptera: Curculionidae). Insect Molecular Biology, 6: 255265.CrossRefGoogle ScholarPubMed
McLeod, J.H. 1953. Notes on the cabbage seedpod weevil, Ceutorhynchus assimilis (Payk.) (Coleoptera: Curculionidae), and its parasites. Proceedings of the Entomological Society of British Columbia, 49: 1118.Google Scholar
Normark, B.B. 1996. Phylogeny and evolution of parthenogenetic weevils of the Aramigus tesselatus species complex (Coleoptera: Curculion idae: Naupactini): evidence from mitochondrial DNA sequences. Evolution, 50: 734745.CrossRefGoogle Scholar
O'Brien, C.W., and Wibmer, G.J. 1982. Annotated checklist of the weevils (Curculionidae sensulato) of North America, Central America, and the West Indies (Coleoptera: Curculionoidea). Memoirs of the American Entomological Institute, 34: 172174.Google Scholar
Posada, D., and Templeton, A.R. 2004. GeoDis: differentiating population structure from history. Version 2.2 [computer program]. Brigham Young University, Provo, Utah.Google Scholar
Reed, R.D., and Sperling, F.A.H. 1999. Interaction of process partitions in phylogenetic analysis: an example from the swallowtail butterfly genus Papilio. Molecular Biology and Evolution, 16: 286297.CrossRefGoogle ScholarPubMed
Rokas, A., Ladoukakis, E., and Zouros, E. 2003. Animal mitochondrial DNA recombination revisited. Trends in Ecology and Evolution, 18: 411417.CrossRefGoogle Scholar
Schneider, S., Roessli, D., and Excoffier, L. 2000. Arlequin: a software for population genetics data analysis. Version 2.0 [computer program]. University of Geneva, Geneva, Switzerland.Google Scholar
Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H., and Flook, P. 1994. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America, 87: 651701.CrossRefGoogle Scholar
Sota, T., Hayashi, M., and Iwai, D. 2004. Phylogeography of the leaf beetle Chrysolina virgata in the wetlands of Japan inferred from the distribution of mitochondrial haplotypes. Entomological Science, 7: 381388.CrossRefGoogle Scholar
Sperling, F.A.H., Landry, J.-F., and Hickey, D.A. 1995. DNA-based identification of introduced ermine moth species in North America (Lepidoptera: Yponomeutidae). Annals of the Entomological Society of America, 88: 155162.CrossRefGoogle Scholar
Swofford, D. 2002. PAUP*: Phylogenetic analysis using parsimony. Version 4.0 beta 10 [computer program]. Illinois Natural History Survey, Champaign, Illinois.Google Scholar
Templeton, A.R. 1998. Nested clade analysis of phylogeographic data: testing hypotheses about gene flow and population history. Molecular Ecology, 7: 381397.CrossRefGoogle ScholarPubMed
Templeton, A.R. 2004. Statistical phylogeography: methods of evaluating and minimizing inference errors. Molecular Ecology, 13: 789809.CrossRefGoogle ScholarPubMed
Templeton, A.R., Routman, E., and Phillips, C.A. 1995. Separating population structure from population history: a cladistic analysis of the geographical distribution of mitochondrial DNA haplotypes in the tiger salamander, Ambystoma tigrinum. Genetics, 140: 767782.CrossRefGoogle ScholarPubMed
White, T.J., Bruns, T., Lee, S., and Taylor, J.W. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR protocols: a guide to methods and applications. Edited by Innis, M.A., Gelfand, D.H., Sninsky, J.J., and White, T.J.. Academic Press Inc., New York. pp. 315322.Google Scholar
Xu, C., Lewis, K., Cantone, K.L., Khan, P., Donnely, C., White, N., Crocker, N., Boyd, P.R., Zaykin, D.M., and Purvis, I.J. 2002. Effectiveness of computational methods in haplotype prediction. Human Genetics, 110: 148156.CrossRefGoogle ScholarPubMed