Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-24T20:05:07.808Z Has data issue: false hasContentIssue false

POPULATION DYNAMICS OF THE CABBAGE APHID, BREVICORYNE BRASSICAE (HOMOPTERA: APHIDIDAE) AT VANCOUVER, BRITISH COLUMBIA: II. DEVELOPMENT, FECUNDITY, AND LONGEVITY

Published online by Cambridge University Press:  31 May 2012

D. A. Raworth
Affiliation:
Research Station, Agriculture Canada, Vancouver, British Columbia V6T 1X2

Abstract

Developmental time of Brevicoryne brassicae (L.) was measured in the laboratory at 8°, 13°, 18°, and 23 °C. Time from birth to adult was 126 degree-days above a threshold of 6.7 °C (°D6.7). Age-specific fecundity and longevity was measured at 13°, 18°, and 23 °C. The temperature thresholds for birth and physiological death rates were not significantly different from 6.7 °C. Fecundity averaged 40.7 nymphs/female and did not vary with temperature or frequency of removal of nymphs. Peak reproduction occurred 75°D6.7 after the molt to adult. Although the time of peak reproduction did not vary as a function of fecundity, height of the reproductive peak and length of the reproductive period did, but not in a 1:1 proportion. Age-specific fecundity was described as a polynomial function of aphid age in °D6.7 and fecundity. Longevity did not vary as a function of fecundity. All aphids survived until after the reproductive peak, so the sum of the age-specific fecundities very nearly equaled the net reproductive rate. Measurements of developmental time, fecundity, and longevity of B. brassicae in the field were 1.3, 0.66, and 1.2 times the respective laboratory value. Consecutive measurements of developmental time and fecundity showed that the former increased and the latter decreased during the season. The consequences of variable developmental time, fecundity, and age-specific reproductive pattern to the quantitative representation of population growth rates are discussed.

Résumé

On a mesuré le temps de développement de Brevicoryne brassicae (L.) en laboratoire, à 8, 13, 18 et 23 °C. La période allant de la naissance au stade adulte a duré 126 degrés-jours, au-dessus d'un seuil de 6.7 °C (°J6.7). On a mesuré la fécondité en fonction de l'âge ainsi que la longévité à 13, 18 et 23 °C. Les seuils de température pour les taux de natalité et de mortalité physiologique n'ont pas vraiment varié comparativement à celui observé à 6.7 °C. Par ailleurs, le taux de fécondité a atteint en moyenne 40.7 nymphes par femelle et il n'a varié ni en fonction de la température ni en fonction de la fréquence d'enlèvement des nymphes. On a observé un taux de reproduction maximal à 75 °J6.7 après la dernière mue. Bien que la période de reproduction maximale n'ait pas varié en fonction de la fécondité, la hauteur du pic reproductif et la longueur de la période de reproduction ont varié, mais pas dans une proportion de 1 : 1. La fécondité en fonction de l'âge a été décrite comme une fonction polynôme de l'âge des pucerons en °J6.7 et de fécondité. La fécondité n'a pas influé sur la longévité. Tous les pucerons ont survécu jusqu'après la période de reproduction maximale de sorte que la somme des fécondités en fonction de l'âge a presque égalé le taux de reproduction net. Les données sur le temps de développement, la fécondité et la longévité de B. brassicae au champ ont atteint 1.3, 0.66 et 1.2 fois les valeurs respectives obtenues en laboratoire. Des mesures consécutives du temps de développement et de la fécondité ont montré que la première a augmenté alors que l'autre diminuait pendant la saison. Le présent rapport souligne également les conséquences des variations du temps de développement, de la fécondité et de la courbe de reproduction en fonction de l'âge sur la représentation quantitative du taux de croissance de la population.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barlow, N. D. and G. Dixon, A. F.. 1980. Simulation of Lime Aphid Population Dynamics. Center for Agricultural Publishing and Documentation, Wageningen, Netherlands. 164 pp.Google Scholar
Bonnemaison, L. 1951. Contribution a l'étude des facteures provoquant l'apparition des formes ailées et sexuées chez Aphidinae. Doctoral Thesis, University of Paris. Cited by Hafez (1961).Google Scholar
Campbell, A., Frazer, B. D., Gilbert, N., Gutierrez, A. P., and Mackauer, M.. 1974. Temperature requirements of some aphids and their parasites. J. appl. Ecol. 11: 431438.CrossRefGoogle Scholar
Dunn, J. A. and Kempton, D. P. H.. 1969. Resistance of rape (Brassica napus) to attack by the cabbage aphid (Brevicoryne brassicae L.). Ann. appl. Biol. 64: 203212.CrossRefGoogle Scholar
Dunn, J. A. and Kempton, D. P. H.. 1971. Differences in susceptibility to attack by Brevicoryne brassicae (L.) on Brussels sprouts. Ann. appl. Biol. 68: 121134.CrossRefGoogle Scholar
Dunn, J. A. and Kempton, D. P. H.. 1972. Resistance to attack by Brevicoryne brassicae among plants of Brussels sprouts. Ann. appl. Biol. 72: 111.CrossRefGoogle Scholar
Frazer, B. D. and Gilbert, N.. 1976. Coccinellids and aphids: a quantitative study of the impact of adult ladybirds (Coleoptera: Coccinellidae) preying on field populations of pea aphids (Homoptera: Aphididae). J. ent. Soc. Br. Columb. 73: 3356.Google Scholar
Gilbert, N. and Gutierrez, A. P.. 1973. A plant-aphid-parasite relationship. J. Anim. Ecol. 42: 323340.CrossRefGoogle Scholar
Gilbert, N., Gutierrez, A. P., Frazer, B. D., and Jones, R. E.. 1976. Ecological Relationships. W. H. Freeman, Reading. 157 pp.Google Scholar
Gutierrez, A. P., Butler, G. D., Wang, Y., and Westphal, D.. 1977. The interaction of pink bollworm (Lepidoptera: Gelechiidae), cotton, and weather: a detailed model. Can. Ent. 109: 14571468.CrossRefGoogle Scholar
Gutierrez, A. P., Havenstein, D. E., Nix, H. A., and Moore, P. A.. 1974. The ecology of Aphis craccivora Koch and subterranean clover stunt virus in south-east Australia. II. A model of cowpea aphid populations in temperate pastures. J. appl. Ecol. 11: 120.CrossRefGoogle Scholar
Hafez, M. 1961. Seasonal fluctuations of the population density of the cabbage aphid, Brevicoryne brassicae (L.), in the Netherlands, and the role of its parasite, Aphidius (Diaeretiella) rapae (Curtis). Tijdschr. PlZiekt. 67: 445548.Google Scholar
Hughes, R. D. 1962. A method for estimating the effects of mortality on aphid populations. J. Anim. Ecol. 31: 389396.CrossRefGoogle Scholar
Hughes, R. D. 1963. Population dynamics of the cabbage aphid, Brevicornye brassicae (L.). J. Anim. Ecol. 32: 393424.CrossRefGoogle Scholar
Lamb, K. P. and Lowe, A. D.. 1967. Studies of the ecology of the cabbage aphid (Brevicoryne brassicae (L.)) on brassica field crops in Canterbury, New Zealand. II. Population study, 1959–60. N.Z. Jl agric. Res. 10: 87108.CrossRefGoogle Scholar
Lewontin, M. 1965. Selection for colonizing ability. pp. 7794in Baker, H. G. and Stebbins, G. L. (Eds.), The Genetics of Colonizing Species. Academic Press, N.Y.Google Scholar
Morris, R. F. 1967. Influence of parental food quality on the survival of Hyphantria cunea. Can. Ent. 99: 2433.CrossRefGoogle Scholar
Raworth, D. A., Frazer, B. D., Gilbert, N., and Wellington, W. G.. 1984. Population dynamics of the cabbage aphid, Brevicoryne brassicae (Homoptera: Aphididae) at Vancouver, British Columbia. I. Sampling methods and population trends. Can. Ent. 116: 861870.CrossRefGoogle Scholar
Root, R. B. and Olson, A. M.. 1969. Population increase of the cabbage aphid, Brevicoryne brassicae, on different host plants. Can. Ent. 101: 768773.CrossRefGoogle Scholar
Way, M. J, and Cammell, M.. 1970. Aggregation behavior in relation to food utilization by aphids. pp. 229247in Watson, A. (Ed.), Animal Populations in Relation to Their Food Resources. Blackwell, Oxford.Google Scholar
Wearing, C. H. 1972. Selection of Brussels sprouts of different water status by apterous and alate Myzus persicae and Brevicoryne brassicae in relation to the age of leaves. Entomologia exp. appl. 15: 139154.CrossRefGoogle Scholar