Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-26T03:47:00.311Z Has data issue: false hasContentIssue false

Pitfall trap designs to maximize invertebrate captures and minimize captures of nontarget vertebrates

Published online by Cambridge University Press:  02 April 2012

J.L. Pearce*
Affiliation:
Great Lakes Forestry Centre, Canadian Forest Service, 1219 Queen Street East, Sault Ste. Marie, Ontario, Canada P6A 2E5
D. Schuurman
Affiliation:
Great Lakes Forestry Centre, Canadian Forest Service, 1219 Queen Street East, Sault Ste. Marie, Ontario, Canada P6A 2E5
K.N. Barber
Affiliation:
Great Lakes Forestry Centre, Canadian Forest Service, 1219 Queen Street East, Sault Ste. Marie, Ontario, Canada P6A 2E5
M. Larrivée
Affiliation:
Great Lakes Forestry Centre, Canadian Forest Service, 1219 Queen Street East, Sault Ste. Marie, Ontario, Canada P6A 2E5
L.A. Venier
Affiliation:
Great Lakes Forestry Centre, Canadian Forest Service, 1219 Queen Street East, Sault Ste. Marie, Ontario, Canada P6A 2E5
J. McKee
Affiliation:
Great Lakes Forestry Centre, Canadian Forest Service, 1219 Queen Street East, Sault Ste. Marie, Ontario, Canada P6A 2E5
D. McKenney
Affiliation:
Great Lakes Forestry Centre, Canadian Forest Service, 1219 Queen Street East, Sault Ste. Marie, Ontario, Canada P6A 2E5
*
1Corresponding author (e-mail: [email protected]).

Abstract

Pitfall traps containing a preservative have become the standard method of sampling for epigeal invertebrates such as carabid beetles and cursorial spiders. However, they often result in high levels of mortality for small mammals and amphibians. We compared the carabid, spider, and vertebrate captures within five pitfall trap types (conventional trap, funnel trap, shallow trap, Nordlander trap, and the ramp trap) to determine the trap type that would reduce vertebrate incidental catch without compromising the capture of invertebrates. We also examined the effect of a mesh screen over pitfall traps on carabid beetle and vertebrate catches. All modifications to the conventional trap design resulted in a reduction in both small mammal and amphibian captures. The shallow pitfall trap and the funnel trap captured a carabid beetle and spider fauna similar to that captured by the conventional trap. The species compositions of the ramp trap and the Nordlander trap were different from those of the other trap types, but these traps were more efficient, capturing more species per individual captured. The ramp trap appeared to be the method of choice for sampling epigeal spiders. Thus, the choice among trap designs for invertebrates depends on the objectives of the study. However, an alternative to the conventional trap design should always be considered to reduce small mammal mortality.

Résumé

Les pièges à fosse contenant un liquide de conservation constituent la méthode standard pour la récolte d'invertébrés épigées, tels que les coléoptères carabidés et les araignées coureuses. Cependant, leur usage entraîne souvent de fortes mortalités de petits mammifères et d'amphibiens. Nous avons comparé les récoltes de carabes, d'araignées et de vertébrés dans cinq types de pièges à fosse (modèle ordinaire, en entonnoir, à forme surbaissée, type Nordlander et à rampe) afin de déterminer le type de piège qui permette de réduire les captures accessoires, sans minimiser la récolte d'invertébrés. Nous avons aussi examiné l'effet d'un grillage au-dessus du piège sur les récoltes de carabes et de vertébrés. Toute modification du modèle ordinaire entraîne une réduction des captures de petits mammifères et d'amphibiens. Les pièges à forme surbaissée et en entonnoir récoltent une faune de carabes et d'araignées semblable à celle du piège ordinaire. La composition en espèces des récoltes au pièges de type Nordlander et à rampe diffère de celle des autres types, mais ces pièges sont plus efficaces et capturent un plus grand nombre d'espèces par individu. Le piège à rampe semble être la méthode privilégiée pour l'échantillonnage des araignées épigées. Le choix d'un type de piège pour la capture des invertébrés dépend donc des objectifs de l'étude. Cependant, on doit toujours envisager l'utilisation d'un modèle de rechange au piège ordinaire afin de réduire la mortalité des petits mammifères.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adis, J. 1979. Problems interpreting arthropod sampling with pitfall traps. Zoologischer Anzeiger, 202: 177184.Google Scholar
American Society of Ichthyologists and Herpetologists. 2002. Guidelines for use of live amphibians and reptiles in field research [online]. Available from http://www.asih.org/pubs/herpcoll.html [accessed March 2004].Google Scholar
American Society of Mammalogists. 1998. Guidelines for the capture, handling, and care of mammals as approved by the American Society of Mammalogists [online]. Available from http://www.mammalsociety.org/committees/commanimalcareuse/98acucguidelines.pdf [accessed March 2003].Google Scholar
Aubry, K.B., and Stringer, A.B. 2000. Field test of the SMED, a small mammals escape device for pitfall trapping amphibians. Northwestern Naturalist, 81: 69.Google Scholar
Bouchard, P., Wheeler, T.A., and Goulet, H. 2000. Design for a low-cost, covered, ramp pitfall trap. The Canadian Entomologist, 132: 387389.CrossRefGoogle Scholar
Brennan, K.E.C., Majer, J.D., and Reyhaert, N. 1999. Determination of an optimal pitfall trap size for sampling spiders in a Western Australian jarrah forest. Journal of Insect Conservation, 3: 297307.CrossRefGoogle Scholar
Burke, D., and Goulet, H. 1998. Landscape and area effects on beetle assemblages in Ontario. Ecography, 21: 472479.CrossRefGoogle Scholar
Digweed, S.C., Currie, C.R., Cárcamo, H.A., and Spence, J.R. 1995. Digging out the “digging-in effect” of pitfall traps: influences of depletion and disturbance on catches of ground beetles (Coleoptera: Carabidae). Pedobiologia, 39: 561576.CrossRefGoogle Scholar
Dorman, D.C., and Haschek, W. 1991. Fatal propylene glycol toxicosis in a horse. Journal of the American Veterinary Medical Association, 198: 16431644.CrossRefGoogle ScholarPubMed
Drickamer, L.C., and Paine, C.R. 1992. Sex, age, nest construction and trap mortality for six species of rodents. American Midland Naturalist, 128: 360365.CrossRefGoogle Scholar
Freitag, R., Ozburn, G.W., and Leech, R.E. 1969. The effects of Sumithion and Phosphamidon on populations of five carabid beetles and the spider Trochosa terricola in northwestern Ontario and including a list of collected species of carabid beetles and spiders. The Canadian Entomologist, 101: 13281333.CrossRefGoogle Scholar
Getz, L.L. 1961. Factors influencing the local distribution of shrews. American Midland Naturalist, 65: 6788.CrossRefGoogle Scholar
Greenslade, P.J.M. 1964. Pitfall trapping as a method for studying populations of Carabidae (Coleoptera). Journal of Applied Ecology, 33: 301310.CrossRefGoogle Scholar
Karraker, N.E. 2001. String theory: reducing mortality of mammals in pitfall traps. Wildlife Society Bulletin, 29: 11581162.Google Scholar
Kogut, N., and Padley, W.D. 1997. A method for reducing mortalities in pitfall traps. Transactions of the Western Section of the Wildlife Society, 33: 7578.Google Scholar
Lemieux, J.P., and Lindgren, B.S. 1999. A pitfall trap for large-scale trapping of Carabidae: comparison against conventional design, using two different preservatives. Pedobiologia, 43: 245253.CrossRefGoogle Scholar
Luff, M.L. 1968. Some effects of formalin on the numbers of Coleoptera caught in pitfall traps. Entomologist's Monthly Magazine, 104: 115116.Google Scholar
Luff, M.L. 1975. Some features influencing the efficiency of pitfall traps. Oecologia, 19: 345357.CrossRefGoogle ScholarPubMed
Luff, M.L. 1986. Aggregation of some Carabidae in pitfall traps. In Carabid beetles, their adaptations and dynamics. Edited by den Boer, P.J., Luff, M.L., Mossakowski, D., and Weber, F.. Gustav Fischer, Stuttgart. pp. 385397.Google Scholar
Magurran, A.E. 2004. Measuring biological diversity. Blackwell Science, Malden, Massachusetts.Google Scholar
McCune, B., and Mefford, M.J. 1999. PC-ORD. Multivariate analysis of ecological data. Version 4. MjM Software Design, Gleneden Beach, Oregon.Google Scholar
Old World Industries, Inc. 2002. Sierra® anti-freeze/coolant material safety data sheet [online]. Available from http://www.peakantifreeze.com/msds/sierra_msds.pdf [accessed September 2003].Google Scholar
Pearce, J., Schuurman, D., Venier, L., and McKee, J. 2002. Carabid community at an urban semi-natural woodlot in Sault Ste. Marie, Ontario, Canada. Great Lakes Entomologist, 35: 161170.Google Scholar
Spence, J.R., and Niemelä, J.K. 1994. Sampling carabid assemblages with pitfall traps: the madness and the method. The Canadian Entomologist, 126: 881894.CrossRefGoogle Scholar
Topping, C.J. 1993. Behavioural responses of three linyphiid spiders to pitfall traps. Entomologia Experimentalis et Applicata, 68: 287293.CrossRefGoogle Scholar
Work, T.T., Buddle, C.M., Korinus, L.M., and Spence, J.R. 2002. Pitfall trap size and capture of three taxa of litter-dwelling arthropods: implications for biodiversity studies. Environmental Entomology, 31: 438448.CrossRefGoogle Scholar
Yunger, J.A., Brewer, R., and Snook, R. 1992. A method of reducing trap mortality of Sorex. Canadian Field-Naturalist, 106: 249251.CrossRefGoogle Scholar