Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-20T03:57:30.516Z Has data issue: false hasContentIssue false

PHYSICAL STRESSORS AFFECTING INTERACTIONS OF SPODOPTERA EXIGUA (HÜBNER) (LEPIDOPTERA: NOCTUIDAE) AND AN ENTOMOPATHOGENIC NEMATODE

Published online by Cambridge University Press:  31 May 2012

Graham S. Thurston
Affiliation:
Department of Nematology, University of California, Davis, California, USA 95616
Harry K. Kaya
Affiliation:
Department of Nematology, University of California, Davis, California, USA 95616

Abstract

Cuticular damage of Spodoptera exigua (Hübner) pupae, caused by puncturing with a sterilized insect pin, resulted in enhanced susceptibility to the entomopathogenic nematode Steinernema carpocapsae (Weiser), but cold shock (5 °C for 24 h) did not alter susceptibility. The additional avenue of entry for the nematode probably accounted for the increased mortality of the damaged pupae. In all treatments, some dead pupae contained Xenorhabdus nematophilus (Poinar and Thomas), the symbiotic bacterium of S. carpocapsae, but no nematodes. More nematode-killed pupae containing X. nematophilus but no nematodes were found in the cold-shock treatment than in the room-temperature control (62.6 versus 46.9%). In contrast, fewer nematode-killed pupae containing X. nematophilus but no nematodes were found in the damaged pupae compared with the undamaged control (25.0 versus 45.1%). Moreover, mortality of nematodes within the cadavers of cold-shocked insects was higher than in the cadavers of non-cold-shocked insects. These results suggest that the stressors, cold shock and cuticular damage, produce fundamentally different responses in insects exposed to them, and that the physiological state of the insect greatly influences nematode survival in the host and hence nematode recycling in the environment.

Résumé

Des ponctions cuticulaires au moyen d’épingles entomologiques stérilisées ont augmenté la sensibilité de nymphes de Spodoptera exigua (Hübner) au nématode entomopathogène Steinernema carpocapsae (Weiser), mais un choc thermique (exposition à 5 °C pendant 24 h) n’a pas affecté leur sensibilité. Les voies d’entrée additionnelles créées par les ponctions sont probablement responsables de la mortalité accrue des nymphes endommagées. Dans toutes les expériences, certaines nymphes mortes contenaient des Xenorhabdus nematophilus (Poinar et Thomas), la bactérie symbiote de S. carpocapsae, mais ne contenaient pas de nématodes. Un plus grand nombre de nymphes tuées contenaient des X. nematophilus mais pas de nématodes chez le groupe soumis au froid que chez le groupe témoin gardé à la température ambiante (62,6 versus 46,9%). En revanche, il y avait moins de nymphes tuées contenant la bactérie mais pas de nématodes chez les nymphes endommagées que chez les nymphes témoins non endommagées (25,0 versus 45,1 %). De plus, la mortalité des nématodes dans les cadavres des insectes traités au froid était plus élevée que celle des nématodes trouvés dans les insectes non soumis au choc thermique. Ces résultats indiquent que les agents de stress, choc thermique et dommage cuticulaire, entraînent des réactions fondamentalement différentes chez les insectes qui les subissent et que la condition physiologique de l’insecte influence fortement la survie des nématodes chez leurs hôtes, et, par conséquent, le cycle des nématodes dans l’environnement.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akhurst, R.J. 1986. Xenorhabdus nematophilus subsp. beddingii (Enterobacteriaceae): A new subspecies of bacteria mutualistically associated with entomopathogenic nematodes. International Journal of Systematic Bacteriology 36: 454457.CrossRefGoogle Scholar
Akhurst, R.J., Bedding, R.A., Bull, R.M., and Smith, D.R.J.. 1992. An epizootic of Heterorhabditis spp. (Heterorhabditidae: Nematoda) in sugarcane scarabaeids (Coleoptera). Fundamentals of Applied Nematology 15: 7173.Google Scholar
Boman, H.G., and Hultmark, D.. 1987. Cell-free immunity in insects. Annual Review of Microbiology 41: 103126.CrossRefGoogle ScholarPubMed
Chapman, R.F. 1982. The Insects. Structure and Function, 3rd ed. Harvard University Press, Cambridge, MA. 919 pp.Google Scholar
Denlinger, D.L., Willis, J.H., and Fraenkel, G.. 1972. Rates and cycles of oxygen consumption during pupal diapause in Sarcophaga flesh flies. Journal of Insect Physiology 18: 871882.CrossRefGoogle ScholarPubMed
Donegan, K., and Lighthart, B.. 1989. Effect of several stress factors on the susceptibility of the predatory insect, Chrysopa carnea (Neuroptera: Chrysopidae), to the fungal pathogen Beauveria bassiana. Journal of Invertebrate Pathology 54: 7984.CrossRefGoogle Scholar
Dunphy, G.B., and Thurston, G.S.. 1990. Insect immunity. pp. 301–323 in Gaugler, R., and Kaya, H.K. (Eds.), Nematodes in Biological Control. CRC Press, Boca Raton, FL. 365 pp.Google Scholar
Dutky, S.R., Thompson, J.V., and Cantwell, G.E.. 1964. A technique for the mass propagation of the DD-136 nematode. Journal of Insect Pathology 6: 417422.Google Scholar
Ferron, P. 1971. Modification of the development of Beauveria tenella mycosis in Melolontha melolontha larvae, by means of reduced doses of organophosphorus insecticides. Entomologia Experimentalis et Applicata 14: 457466.CrossRefGoogle Scholar
Gaugler, R., Campbell, J.F., and Gupta, P.. 1991. Characterization and basis of enhanced host-finding in a genetically improved strain of Steinernema carpocapsae. Journal of Invertebrate Pathology 57: 234241.CrossRefGoogle Scholar
Gaugler, R., LeBeck, L., Nakagaki, B., and Boush, G.M.. 1980. Orientation of the entomogenous nematode, Neoaplectana carpocapsae, to carbon dioxide. Environmental Entomology 9: 649652.CrossRefGoogle Scholar
Götz, P., and Boman, H.G.. 1985. Insect immunity. pp. 453–486 in Kerkut, G.A., and Gilbert, L.I. (Eds.), Comprehensive Insect Physiology, Biochemistry and Pharmacology, Vol. 3. Pergamon Press, Oxford. 523 pp.Google Scholar
Hara, A.H., and Kaya, H.K.. 1983. Susceptibility of Spodoptera exigua pupae from different pupation sites to the nematode Neoaplectana carpocapsae. Journal of Invertebrate Pathology 42: 418420.CrossRefGoogle Scholar
Kaya, H.K., and Grieve, B.J.. 1982. The nematode Neoaplectana carpocapsae and the beet armyworm Spodoptera exigua: Infectivity of prepupae and pupae in soil and of adult during emergence from soil. Journal of Invertebrate Pathology 39: 192197.CrossRefGoogle Scholar
Kaya, H.K., and Hara, A.H.. 1980. Differential susceptibility of lepidopterous pupae to infection by the nematode Neoaplectana carpocapsae. Journal of Invertebrate Pathology 36: 389393.CrossRefGoogle Scholar
Kaya, H.K., and Hara, A.H.. 1981. Susceptibility of various species of lepidopterous pupae to the entomogenous nematode Neoaplectana carpocapsae. Journal of Nematology 13: 291294.Google Scholar
Khlibsuwan, W., Ishibashi, N., and Kondo, E.. 1992. Response of Steinernema carpocapsae infective juveniles to the plasma of three insect species. Journal of Nematology 24: 156159.Google Scholar
LeBeck, L.M., Gaugler, R., Kaya, H.K., Hara, A.H., and Johnson, M.W.. 1993. Host stage suitability of the leafminer Liriomyza trifolii (Diptera: Agromyzidae) to the entomopathogenic nematode Steinernema carpocapsae (Rhabditida: Steinemematidae). Journal of Invertebrate Pathology 62: 5863.CrossRefGoogle Scholar
Lighthart, B., Sewall, D., and Thomas, D.R.. 1988. Effect of several stress factors on the susceptibility of the predatory mite, Metaseiulus occidentalis (Acari: Phytoseiidae), to the weak bacterial pathogen Serratia marcescens. Journal of Invertebrate Pathology 52: 3342.CrossRefGoogle Scholar
Popiel, I., Grove, D.L., and Friedman, M.J.. 1989. Infective juvenile formation in the insect parasitic nematode Steinernema feltiae. Parasitology 99: 7781.CrossRefGoogle Scholar
SAS Institute Inc. 1988. SAS User's Guide: Statistics, Version 5 Edition. SAS Institute Inc., Cary, NC. 956 pp.Google Scholar
Steinhaus, E.A. 1958. Stress as a factor in insect disease. Proceedings of the Xth International Congress of Entomology 4: 725730.Google Scholar
Steinhaus, E.A., and Martignoni, M.E.. 1970. An Abridged Glossary of Terms used in Invertebrate Pathology, 2nd ed. Pacific Northwest Forest and Range Experiment Station, USDA. 38 pp.Google Scholar
Thurston, G.S., Kaya, H.K., Burlando, T.M., and Harrison, R.E.. 1993. Milky disease bacterium as a stressor to increase susceptibility of scarabaeid larvae to an entomopathogenic nematode. Journal of Invertebrate Pathology 61: 167172.CrossRefGoogle Scholar
Woodring, J.L., and Kaya, H.K.. 1988. Steinernematid and Heterorhabditid Nematodes: A Handbook of Techniques. Southern Cooperative Series Bulletin 331: 30 pp.Google Scholar