Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T06:47:21.034Z Has data issue: false hasContentIssue false

Phylogenetics and molecular identification of the Ochlerotatus communis complex (Diptera: Culicidae) using DNA barcoding and polymerase chain reaction-restriction fragment length polymorphism

Published online by Cambridge University Press:  05 November 2013

Hooman H. Namin*
Affiliation:
Department of Entomology, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, Manitoba, Canada R3 T 2N2
Mahmood Iranpour
Affiliation:
Department of Entomology, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, Manitoba, Canada R3 T 2N2
Barbara J. Sharanowski
Affiliation:
Department of Entomology, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, Manitoba, Canada R3 T 2N2
*
1Corresponding author (e-mail: [email protected]).

Abstract

The Ochlerotatus communis (De Geer, 1776) complex consists of four cryptic mosquito species in North America, including: O. communis, Ochlerotatus churchillensis (Ellis and Brust, 1973), Ochlerotatus nevadensis (Chapman and Barr, 1964), and Ochlerotatus tahoensis (Dyar, 1916). Most of the morphological characters used for the identification of these species are quantitative and overlap across species. Here we evaluated the efficacy of DNA barcoding for identification of three members of the communis complex (O. nevadensis is not included in this study) and developed diagnostic restriction fragment length polymorphism (RFLP) patterns for O. communis and O. churchillensis. A phylogeny of 23 Ochlerotatus Lynch Arribálzaga, 1891 species was inferred using mitochondrial cytochrome c oxidase subunit I gene sequences. All species included in our analysis within the O. communis complex were delineated using cytochrome c oxidase subunit I barcodes. However, this complex was recovered as paraphyletic with respect to Ochlerotatus abserratus (Felt and Young, 1904) and Ochlerotatus implicatus (Vockeroth, 1954), indicating the need for increased genetic and taxonomic sampling to infer the phylogenetic relationships of these taxa. The RFLP profile for multiple field specimens of O. communis was distinct from all RFLP patterns for O. churchillensis, and this method can be used as an efficient molecular method for the identification these species.

Résumé

Le complexe d’Ochlerotatus communis (De Geer, 1776) comprend quatre espèces cryptiques de moustiques, soit O. communis, O. churchillensis (Ellis et Brust, 1973), O. nevadensis (Chapman et Barr, 1964) et O. tahoensis (Dyar, 1916). La plupart des caractères morphologiques utilisés pour l'identification de ces espèces sont quantitatifs et il y a du recoupement entre les espèces. Nous évaluons l'efficacité de la codification à barres d'ADN pour l'identification de trois membres du complexe de communis (O. nevadensis n'est pas inclus dans notre étude) et mettons au point des patrons RFLP pour O. communis et O. churchillensis. Nous avons déduit une phylogénie de 23 espèces d’Ochlerotatus Lynch Arribálzaga, 1891 à partir des séquences du gène mitochondrial de la sous-unité I de la cytochrome c oxydase. Il a été possible de délimiter toutes les espèces du complexe de communis incluses dans notre analyse à l'aide des codes de barres de COI. Cependant le complexe s'est avéré paraphylétique en ce qui a trait à O. abserratus (Felt et Young, 1904) et O. implicatus (Vockeroth, 1954), ce qui indique qu'il faudra un plus important échantillonnage génétique et taxonomique afin de déduire les relations phylogénétiques de ces taxons. Le profil RFLP de nombreux échantillons de terrain d’O. communis se distingue des patrons RFLP d’O. churchillensis et la méthode peut servir d'outil moléculaire efficace pour l'identification de ces espèces.

Type
Behaviour and Ecology
Copyright
Copyright © Entomological Society of Canada 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Subject editor: Patrice Bouchard

References

Andreadis, T.G., Anderson, J.F., Armstrong, P.M., Main, A.J. 2008. Isolations of Jamestown Canyon virus from field collected mosquitoes in Connecticut, USA: a ten year analysis, 1997-2006. Vector Borne Zoonotic Disease, 8: 175188.CrossRefGoogle Scholar
Belton, P. 1982. The cuticular vestiture of larvae of Aedes communis and A. nevadensis (Diptera: Culicidae). Canadian Journal of Zoology, 40: 16421646.Google Scholar
Belton, P. 1983. The mosquitoes of British Columbia. British Columbia Provincial Museum Publishing, Victoria, British Columbia, Canada.Google Scholar
Bennett, R.S., Gresko, A.K., Nelson, J.T., Murphy, B.R., Whitehead, S.S. 2012. A recombinant chimeric La Crosse virus expressing the surface glycoproteins of Jamestown Canyon virus is immunogenic and protective against challenge with either parental virus in mice or monkeys. Journal of Virology, 86: 420426.Google Scholar
Black, W.C. 2004. Learning to use Ochlerotatus is just the beginning. Journal of American Mosquito Control Association, 20: 215216.Google Scholar
Boring, C.A., Sharanowski, B.J., Sharkey, M.J. 2011. Maxfischeriinae: a new braconid subfamily (Hymenoptera) with highly specialized egg morphology. Systematic Entomology, 36: 529548.Google Scholar
Brust, R.A. Munstermann, L.E. 1992. Morphological and genetic characterization of the Aedes (Ochlerotatus) communis complex (Diptera: Culicidae) in North America. Annals of the Entomological Society of America, 85: 110.Google Scholar
Burgdorfer, W., Newhouse, V.F., Thomas, L.A. 1961. Isolation of California encephalitis virus from the blood of a snowshoe hare (Lepus americanus) in western Montana. American Journal of Hygiene, 73: 344349.Google Scholar
Carpenter, S.J. LaCasse, W.J. 1955. Mosquitoes of North America (north of Mexico). University of California Press, Berkeley and Los Angeles, California, United States of America.Google Scholar
Chapman, H.C. Barr, A.R. 1964. Aedes communis nevadensis, a new subspecies of mosquito from western North America (Diptera: Culicidae). Mosquito News, 24: 439447.Google Scholar
Cywinska, A., Hunter, F.F., Hebert, P.D.N. 2006. Identifying Canadian mosquito species through DNA barcodes. Medical and Veterinary Entomology, 20: 413424.Google Scholar
Darsie, R.F. 1995. Identification of Aedes tahoensis, Aedes clivus, and Aedes washinoi using the Darsie/Ward keys (Diptera, Culicidae). Mosquito Systematics, 27: 4042.Google Scholar
Drummond, A.J., Ashton, B., Buxton, S., Cheung, M., Cooper, A., Duran, C., et al. 2011. Geneious v5.4.5 [online]. Available from www.geneious.com [accessed 7 September 2013].Google Scholar
Edman, J.D. 2005. Journal policy on names of aedine mosquito genera and subgenera. Journal of Medical Entomology, 42: 511.Google Scholar
Ellis, R.A. Brust, R.A. 1973. Sibling species delimitation in the Aedes communis (Degeer) aggregate (Diptera: Culicidae). Canadian Journal of Zoology, 51: 915959.Google Scholar
Fauvel, M., Artsob, H., Calisher, C.H., Davignon, L., Chagnon, A., Skvorc-Ranko, R., et al. 1980. California group virus encephalitis in three children from Quebec: clinical and serologic findings. Canadian Medical Association Journal, 122: 6062.Google Scholar
Folmer, O., Black, M., Hoeh, W., Lutz, R., Vrijenhoek, R. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3: 294299.Google Scholar
Gibson, C.M., Kao, R.H., Blevins, K.K., Travers, P.D. 2012. Integrative taxonomy for continental-scale terrestrial insect observations. PLoS One, 7: e37528. doi:10.1371/journal.pone.0037528.Google Scholar
Grimstad, P.R. 1988. California group viruses. In The arboviruses: epidemiology and ecology, volume II. Edited by T.P. Monath. CRC Press, Boca Raton, Florida, United States of America. Pp. 99136.Google Scholar
Grimstad, P.R. 2001. Jamestown Canyon virus. In Encyclopedia of arthropod transmitted infections of man and domestic animals. Edited by M.W. Service. CABI Publishing, New York, United States of America. Pp. 235239.Google Scholar
Heard, P.H., Zhang, M., Grimstad, P.R. 1990. Isolation of Jamestown Canyon virus (California serogroup) from Aedes mosquitoes in an enzootic focus in Michigan. Journal of the American Mosquito Control Association, 6: 461468.Google Scholar
Hebert, P.D.N., Cywinska, A., Ball, S.L., DeWaard, J.R. 2003. Biological identifications through DNA barcodes. Proceedings of the Royal Society Biological Sciences, 270: 313321.CrossRefGoogle ScholarPubMed
Hernández-Triana, M., Crainey, J.L., Hall, A., Fatih, F., MacKenzie-Dodds, J., Shelley, A.J., et al. 2012. DNA barcodes reveal cryptic genetic diversity within the blackfly subgenus Trichodagmia Enderlein (Diptera: Simuliidae: Simulium) and related taxa in the New World. Zootaxa, 3514: 4369.Google Scholar
Huelsenbeck, J.P. Ronquist, F. 2001. MrBayes: Bayesian inference of phylogeny. Bioinformatics, 17: 754755.Google Scholar
Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., et al. 2007. Clustal W and Clustal X version 2.0. Bioinformatics, 23: 29472948.Google Scholar
McLean, D.M., Judd, B.D., Shives, K.A. 1981. Snowshoe hare virus in Canadian arctic mosquitoes during 1980. Mosquito News, 41: 287290.Google Scholar
Mitchell, A., Sperling, F.A.H., Hickey, D.A. 2002. Higher-level phylogeny of mosquitoes (Diptera: Culicidae): mtDNA data support a derived placement for Toxorhynchites . Insect Systematics and Evolution, 33: 163174.Google Scholar
Morlais, I. Severson, D.W. 2002. Complete mitochondrial DNA sequence and amino acid analysis of the cytochrome C oxidase subunit I (COI) from Aedes aegypti . DNA Sequence, 13: 123127.Google Scholar
Posada, D. 2006. ModelTest Server: a web-based tool for the statistical selection of models of nucleotide substitution online. Nucleic Acids Research, 34: W700W703.Google Scholar
Posada, D. Crandall, K.A. 1998. Modeltest: testing the model of DNA substitution. Bioinformatics, 14: 817818.Google Scholar
Reinert, J.F. 2000. New classification for the composite genus Aedes (Diptera: Culicidae: Aedini), elevation of subgenus Ochlerotatus to generic rank, reclassification of the other subgenera, and notes on certain subgenera and species. Journal of the American Mosquito Control Association, 16: 175188.Google Scholar
Reno, H.E., Vodkin, M.H., Novak, R.J. 2000. Differentiation of Aedes triseriatus (Say) from Aedes hendersoni Cockerell (Diptera: Culicidae) by restriction fragment length polymorphisms of amplified ribosomal DNA. American Journal of Tropical Medicine and Hygiene, 62: 193199.Google Scholar
Rivera, J. Currie, D.C. 2009. Identification of Nearctic black flies using DNA barcodes (Diptera: Simuliidae). Molecular Ecology Resources, 9: 224236.Google Scholar
Rokas, A., Williams, B.L., King, N., Carroll, S.B. 2003. Genome-scale approaches to resolving incongruence in molecular phylogenies. Nature, 425: 798803.Google Scholar
Ronquist, F. Huelsenbeck, J.P. 2003. MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19: 15721574.Google Scholar
Rubinoff, D. Holland, B.S. 2005. Between two extremes: mitochondrial DNA is neither the panacea nor the nemesis of phylogenetic and taxonomic inference. Systematic Biology, 54: 952961.Google Scholar
Rust, R.S., Thompson, W.H., Matthews, C.G., Beauty, B.J., Chun, R.W. 1999. La Crosse and other forms of California encephalitis. Journal of Child Neurology, 14: 114.Google Scholar
Savage, H.M. Strickman, D. 2004. The genus and subgenus categories within Culicidae and placement of Ochlerotatus as a subgenus of Aedes . Journal of the American Mosquito Control Association, 20: 208214.Google Scholar
Schutz, S.J. Eldridge, B.F. 1993. Biogeography of the Aedes (Ochlerotatus) communis species complex (Diptera: Culicidae) in the western United States. Mosquito Systematics, 25: 170176.Google Scholar
Sharanowski, B.J., Dowling, A.P.G., Sharkey, M.J. 2011. Molecular phylogenetics of Braconidae (Hymenoptera: Ichneumonoidea) based on multiple nuclear genes, and its implications for classification. Systematic Entomology, 36: 549572.Google Scholar
Shepard, J.J., Andreadis, T.G., Vossbrinck, C.R. 2006. Molecular phylogeny and evolutionary relationships among mosquitoes (Diptera: Culicidae) from the northeastern United States based on small subunit ribosomal DNA (18S rDNA) sequences. Journal of Medical Entomology, 43: 443454.Google Scholar
Smith, M.A., Woodley, N.E., Janzen, D.H., Hallwachs, W., Hebert, P.D.N. 2006. DNA barcodes reveal cryptic host-specificity within the presumed polyphagous members of a genus of parasitoid flies (Diptera: Tachinidae). Proceedings of the National Academy of Sciences, 103: 36573662.Google Scholar
Swofford, D.L. 2000. PAUP*: phylogenetic analysis using parsimony (*and other methods), Version 4.0. Sinauer Associates, Sunderland, Massachusetts, United States of America.Google Scholar
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S. 2011. MEGA 5: molecular genetics analysis using maximum likelihood, evolutionary distance and maximum parisimony methods. Molecular Biology Evolution, 28: 27312739.Google Scholar
Thielman, A.C. Hunter, F.F. 2007. A photographic key to adult female mosquito species of Canada (Diptera: Culicidae). Canadian Journal of Arthropod Identification, 4: 1116.Google Scholar
Vincze, T., Posdai, J., Roberts, R.J. 2003. NEBcutter: a program to cleave DNA with restriction enzymes. Nucleic Acids Research, 31: 36883691.Google Scholar
Wood, D.M., Dang, P.T., Ellis, R.A. 1979. The insects and arachnids of Canada. The mosquitoes of Canada (Diptera: Culicidae). Agriculture Canada Publication, Ottawa, Ontario, Canada.Google Scholar
Supplementary material: File

Namin et al. Supplementary Material

Table

Download Namin et al. Supplementary Material(File)
File 264.7 KB