Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-03T23:26:41.017Z Has data issue: false hasContentIssue false

Phylogenetic analysis of Micracidini bark beetles (Coleoptera: Curculionidae) demonstrates a single trans-Atlantic disjunction and inclusion of Cactopinus in the New World clade

Published online by Cambridge University Press:  29 August 2016

Bjarte H. Jordal*
Affiliation:
Department of Natural History, University Museum, University of Bergen, P.O. Box 7800, NO-5020 Bergen, Norway
Johanna Kaidel
Affiliation:
Department of Natural History, University Museum, University of Bergen, P.O. Box 7800, NO-5020 Bergen, Norway
*
1Corresponding author (e-mail: [email protected]).

Abstract

Micracidini (Coleoptera: Curculionidae: Scolytinae) is an unusual tribe of mainly bigynous bark beetles found in dry forests and scrublands in Afrotropical and Neotropical regions. Their phylogenetic relationship to other bark beetle groups is poorly known with few clues from external morphology. Hence, a phylogenetic analysis of five genes (COI, EF-1a, 28S, CAD, ArgK) and morphological (internal and external) data was conducted to test potential sister group relationships, including 56 outgroup genera in 22 tribes, and 18 species in 10 genera of Micracidini. Cactopinus Schwarz – a genus with many cactus feeding species – was nested within a clade of all Neotropical and Nearctic genera. The New World was colonised by an Afrotropical ancestor about 75–85 million years ago, where cactus feeding in Cactopinus evolved much later. All analyses indicated a paraphyletic clade of Afrotropical micracidines, strongly supporting inclusion of the Ipini genus Dendrochilus Schedl in Afromicracis Schedl. Hypoborini appear to be one of the more plausible sistergroup candidates to Micracidini, and revealed morphological similarity in protibial and proventricular characters. Most phylogenetic results were supported independently by morphological and molecular data and therefore document the power of thorough examination of morphological characters analysed properly in a phylogenetic context.

Type
Systematics & Morphology
Copyright
© Entomological Society of Canada 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Subject editor: Derek Sikes

References

Atkinson, T.H. 2010. New species and records of Cactopinus Schwarz with a key to species (Coleoptera, Curculionidae, Scolytinae). ZooKeys, 56: 1733. doi:10.3897/zookeys.56.515.CrossRefGoogle Scholar
Beaver, R.A. 2011. New synonymy and taxonomic changes in bark and ambrosia beetles (Coleoptera: Curculionidae: Scolytinae, Platypodinae). Koleopterologische Rundschau, 81: 277289.Google Scholar
Blackman, M.W. 1928. Notes on Micracinae, with descriptions of twelve new species. Bulletin of the New York State College of Forestry at Syracuse University, Technical Publication, New York State College of Forestry at Syracuse University, 25: 184–208.Google Scholar
Blackman, M.W. 1943. New genera and species of bark beetles of the subfamily Micracinae (Scolytidae, Coleoptera). Proceedings of the United States National Museum, 93: 341365.Google Scholar
Bright, D.E. 2014. A catalogue of Scolytidae and Platypodidae (Coleoptera), supplement 3 (2000–2010), with notes on subfamily and tribal reclassifications. Insecta Mundi, 356: 1336.Google Scholar
Castresana, J. 2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution, 17: 540552.Google Scholar
Chamberlin, W.J. 1939. The bark and timber beetles of North America north of Mexico. The taxonomy, biology and control of 575 species belonging to 72 genera of the superfamily Scolytoidea. Oregon State College Cooperative Association, Corvallis, Oregon, United States of America.Google Scholar
Cognato, A.I. and Grimaldi, D. 2009. 100 million years of morphological conservation in bark beetles (Coleoptera: Curculionidae: Scolytinae). Systematic Entomology, 34: 93100.Google Scholar
Drummond, A.J. and Rambaut, A. 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology, 7: 214214.Google Scholar
Edgar, R.C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32: 17921797.Google Scholar
Farris, J.S., Källersjö, M., Kluge, A.G., and Bult, C. 1995. Constructing a significance test for incongruence. Systematic Biology, 44: 570572.Google Scholar
Hopkins, A.D. 1915. Contributions toward a monograph of the scolytid beetles. II. Preliminary classification of the superfamily Scolytoidea. United States Department of Agriculture, Technical Series, 17: 165232.Google Scholar
Jordal, B.H. 1998. A review of Scolytodes Ferrari (Coleoptera: Scolytidae) associated with Cecropia (Cecropiaceae) in the northern Neotropics. Journal of Natural History, 32: 3184.Google Scholar
Jordal, B.H. 2009. The Madagascan genus Dolurgocleptes Schedl (Coleoptera: Curculionidae, Scolytinae): description of a new species and transfer to the tribe Polygraphini. Zootaxa, 2014: 4150.CrossRefGoogle Scholar
Jordal, B.H. 2010. Revision of the genus Phloeoditica Schedl – with description of two new genera and two new species in Phloeosinini (Coleoptera, Curculionidae, Scolytinae). ZooKeys, 56: 141156. doi:10.3897/zookeys.56.522.Google Scholar
Jordal, B.H. 2012. Phrixosoma concavifrons – a sexually dimorphic Phrixosomatini (Coleoptera: Curculionidae) from the Udzungwa mountains in Tanzania. Zootaxa, 3255: 5256.Google Scholar
Jordal, B.H. 2015. Molecular phylogeny and biogeography of the weevil subfamily Platypodinae reveals evolutionarily conserved range patterns. Molecular Phylogenetics and Evolution, 92: 294307.Google Scholar
Jordal, B.H., Beaver, R.A., Normark, B.B., and Farrell, B.D. 2002a. Extraordinary sex ratios and the evolution of male neoteny in sib-mating Ozopemon beetles. Biological Journal of the Linnean Society, 75: 353360.Google Scholar
Jordal, B.H. and Cognato, A.I. 2012. Molecular phylogeny of bark and ambrosia beetles reveals multiple origins of fungus farming during periods of global warming. BMC Evolutionary Biology, 12: 110. doi:10.1186/1471-2148-12-133.Google Scholar
Jordal, B.H., Gillespie, J.J., and Cognato, A.I. 2008. Secondary structure alignment and direct optimization of 28S rDNA sequences provide limited phylogenetic resolution in bark and ambrosia beetles (Curculionidae: Scolytinae). Zoologica Scripta, 37: 114.Google Scholar
Jordal, B.H. and Hewitt, G.M. 2004. The origin and radiation of Macaronesian beetles breeding in Euphorbia: the relative importance of multiple data partitions and population sampling. Systematic Biology, 53: 711734.Google Scholar
Jordal, B.H., Kirkendall, L.R., and Harkestad, K. 2004. Phylogeny of a Macaronesian radiation: host-plant use and possible cryptic speciation in Liparthrum bark beetles. Molecular Phylogenetics and Evolution, 31: 554571.Google Scholar
Jordal, B.H., Normark, B.B., Farrell, B.D., and Kirkendall, L.R. 2002b. Extraordinary haplotype diversity in haplodiploid inbreeders: phylogenetics and evolution of the sib-mating bark beetle genus Coccotrypes . Molecular Phylogenetics and Evolution, 23: 171188.CrossRefGoogle ScholarPubMed
Jordal, B.H., Sequeira, A.S., and Cognato, A.I. 2011. The age and phylogeny of wood boring weevils and the origin of subsociality. Molecular Phylogenetics and Evolution, 59: 708724.CrossRefGoogle ScholarPubMed
Kirejtshuk, A.G., Azar, D., Beaver, R.A., Mandelshtam, M.Y., and Nel, A. 2009. The most ancient bark beetle known: a new tribe, genus and species from Lebanese amber (Coleoptera, Curculionidae, Scolytinae). Systematic Entomology, 34: 101112.CrossRefGoogle Scholar
Kirkendall, L.R., Biedermann, P.H.W., and Jordal, B.H. 2014. Diversity and evolution of bark beetles. In Bark beetles: biology and ecology of native and invasive species. Edited by F. Vega and R. Hofstetter. Elsevier, London, United Kingdom. Pp. 85156.Google Scholar
Kukalova-Peck, J. and Lawrence, J.F. 1993. Evolution of the hind wing in Coleoptera. The Canadian Entomologist, 125: 181258.Google Scholar
Lekander, B. 1968. Scandinavian bark beetle larvae; descriptions and classification. Department of Forest Zoology, Royal College of Forestry, Stockholm, Sweden.Google Scholar
Leschen, R.A.B. and Beutel, R.G. 2014. Arthropoda: Insecta: Coleoptera, volume 3: morphology and systematics (Phytophaga). De Gruyter, Berlin, Germany.CrossRefGoogle Scholar
Lopez-Buenfil, J.A., Valdez-Carrasco, J., Equihua-Martinez, A., and Burgos-Solorio, A. 2001. El proventriculo como estructura para identificar generos Mexicanos de Scolytidae (Coleoptera). Folia Entomologica Mexicana, 40: 325372.Google Scholar
Nobuchi, A. 1969. A comparative morphological study of the proventriculus in the adult of the subfamily Scolytoidea (Coleoptera). Bulletin of the Government Forest Experiment Station, 224: 39110. plates 111–117.Google Scholar
Nylander, J.A.A. 2004. MrModeltest. Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.Google Scholar
Rambaut, A., Suchard, M.A., Xie, D., and Drummond, A.J. 2014. Tracer v1.6. Available from http://beast.bio.ed.ac.uk/Tracer [accessed 8 June 2016].Google Scholar
Ronquist, F. and Huelsenbeck, J.P. 2003. MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19: 15721574.Google Scholar
Santos, M.F.D.E.A., Mermudes, J.R.M., and Fonseca, V.M.M.D. 2011. A specimen of Curculioninae (Curculionidae, Coleoptera) from the Lower Cretaceous, Araripe Basin, north-eastern Brazil. Palaeontology, 54: 807814. doi:10.1111/j.1475-4983.2011.01057.x.CrossRefGoogle Scholar
Schedl, K.E. 1931. Morphology of the bark beetles of the genus Gnathotrichus Eichhoff. Smithsonian Institution, Washington, District of Columbia, United States of America.Google Scholar
Schedl, K.E. 1957. Scolytoidea nouveaux du Congo Belge, II. Mission R. Mayne – K. E. Schedl 1952. Musee Royale du Congo Belge Tervuren, Ser 8, Sciences Zoologiques, 56: 1162.Google Scholar
Schedl, K.E. 1958. Breeding habits of arboricole insects in Central Africa. Proceedings of the 10th International Congress of Entomology. Edited by E.C. Becker. Mortimer Limited, Ottawa, Ontario, Canada. Pp. 183–197.Google Scholar
Swofford, D. 2002. PAUP*. Phylogenetic analysis using parsimony (*and other methods), version 4. Sinauer Associates, Sunderland, Massachusetts, United States of America.Google Scholar
Wiens, J.J. 2003. Missing data, incomplete taxa, and phylogenetic accuracy. Systematic Biology, 52: 528538. doi:10.1080/10635150390218330.Google Scholar
Wood, S.L. 1957. New species of bark beetles (Coleoptera: Scolytidae), mostly Mexican, part IV. Great Basin Naturalist Memoirs, 17: 105110.Google Scholar
Wood, S.L. 1978. A reclassification of the subfamilies and tribes of Scolytidae (Coleoptera). Annales de la Sociètè Entomologique de France, 14: 95122.Google Scholar
Wood, S.L. 1982. The bark and ambrosia beetles of North and Central America (Coleoptera: Scolytidae), a taxonomic monograph. Great Basin Naturalist Memoirs, 6: 11359.Google Scholar
Wood, S.L. 1986. A reclassification of the genera of Scolytidae (Coleoptera). Great Basin Naturalist Memoirs, 10: 1126.Google Scholar
Wood, S.L. 2007. Bark and ambrosia beetles of South America (Coleoptera, Scolytidae). Brigham Young University, Provo, Utah, United States of America.Google Scholar
Wood, S.L. and Bright, D. 1992. A catalog of Scolytidae and Platypodidae (Coleoptera). Part 2: taxonomic index. Great Basin Naturalist Memoirs, 13: 11553.Google Scholar
Supplementary material: PDF

Jordal and Kaidel supplementary material

Jordal and Kaidel supplementary material 1

Download Jordal and Kaidel supplementary material(PDF)
PDF 91.6 KB