Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-28T03:26:14.776Z Has data issue: false hasContentIssue false

PHOTOPERIODISM AND LIFE CYCLE PLASTICITY OF AN APHID, MACROSIPHUM EUPHORBIAE (THOMAS), FROM CENTRAL NORTH AMERICA

Published online by Cambridge University Press:  31 May 2012

R.J. Lamb
Affiliation:
Cereal Research Centre, Agriculture and Agri-Food Canada, 195 Dafoe Road, Winnipeg, Manitoba, Canada R3T 2M9
P.A. MacKay
Affiliation:
Department of Entomology, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2

Abstract

Photoperiodic responses are described for five clones of the potato aphid, Macrosiphum euphorbiae (Thomas) (Homoptera: Aphididae), from Manitoba, Canada, a region with a strongly seasonal, continental climate. When exposed to long nights, parthenogenetic wingless females produce winged males and parthenogenetic winged females that subsequently produce mating females. The young adult males and winged females are restless and take flight readily, which is typical of a post-teneral migratory phase that could carry them to a winter host. These traits are characteristic of host-alternating species. However, wingless females also produce mating females, and winged females also produce parthenogenetic wingless females, traits which are characteristic of nonhost-alternating species. Clones differ in the frequencies of phenotypes they produce, some being more host-alternating than others. Critical night lengths are shortest and frequencies of males highest for clones that are closest to the host-alternating type of life cycle. The importance of phenotypic and genotypic plasticity in the life cycle is discussed.

Résumé

On trouvera ici la description des réactions à la photopériode chez cinq clones du Puceron de la pomme de terre, Macrosiphum euphorbiae (Thomas) (Homoptera : Aphididae), du Manitoba, Canada, région au climat continental fortement saisonnier. Lorsque les nuits sont longues, les femelles aptères parthénogénétiques produisent des mâles ailés et des femelles ailées parthénogénétiques qui produiront éventuellement des femelles reproductrices. Les jeunes adultes mâles et les femelles ailées sont agitées et s’envolent spontanément, un comportement typique des adultes migrateurs et qui peut les emporter vers un hôte où ils passeront l’hiver. Ces caractéristiques sont particulières aux espèces dioeciques. Cependant, les femelles aptères produisent aussi des femelles reproductrices et les femelles ailées produisent aussi des femelles aptères parthénogénétiques, propriétés typiques d’une espèce monoecique. Les clones diffèrent quant à la fréquence des phenotypes qu’ils produisent et certains sont plus dioeciques que d’autres. La durée critique des nuits est plus courte et la fréquence des mâles, plus élevée chez les clones qui ont plus tendance à changer d’hôte. L’importance de la plasticité phénotypique et génotypique du cycle biologique est examinée.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blackman, R.L. 1971. Variation in the photoperiodic response within natural populations of Myzus persicae (Sulz.). Bulletin of Entomological Research 60: 533546.CrossRefGoogle ScholarPubMed
Blackman, R.L. 1974. Life-cycle variation of Myzus persicae (Sulz.) (Hom., Aphididae) in different parts of the world, in relation to genotype and environment. Bulletin of Entomological Research 63: 595607.CrossRefGoogle Scholar
Blackman, R.L. 1975. Photoperiodic determination of the male and female sexual morphs of Myzus persicae. Journal of Insect Physiology 21: 435453.CrossRefGoogle Scholar
Blackman, R.L. 1994. The simplification of aphid terminology. European Journal of Entomology 91: 139141.Google Scholar
Blackman, R.L., and Eastop, V.F.. 1984. Aphids on the World's Crops. Wiley Interscience, Chichester, U.K.Google Scholar
Delisle, J., Cloutier, C., and McNeil, J.N.. 1983. Precocene II-induced alate production in isolated and crowded alate and apterous virginoparae of the aphid, Macrosiphum euphorbiae. Journal of Insect Physiology 29: 477484.CrossRefGoogle Scholar
Guldemond, J.A. 1990. Host plant shift, host race formation and speciation in Cryptomyzus (Homoptera: Aphididae). Acta Phytopathologica et Entomologica Hungarica 25: 8996.Google Scholar
Guldemond, J.A., and Tigges, W.T.. 1991. Production of sexuals and sex ratios in Cryptomyzus species in relation to dispersal and host-alternation (Homoptera: Aphidinea: Aphididae). Entomologia Generalis 16: 257264.CrossRefGoogle Scholar
Hand, S.C., and Wratten, S.D.. 1985. Production of sexual morphs by the monoecious cereal aphid Sitobion avenae. Entomologia Experimentalis et Applicata 38: 239247.CrossRefGoogle Scholar
Harrington, R. 1984. Photoperiodic control of sexual morph production by the currant-sowthistle aphid, Hyperomyzus lactucae. Entomologia Experimentalis et Applicata 35: 169175.CrossRefGoogle Scholar
Kawada, K. 1987. Polymorphism and morph determination. pp. 255268in Minks, A.K., and Harrewijn, P. (Eds.), Aphids: Their Biology, Natural Enemies and Control. Elsevier, Amsterdam.Google Scholar
Lamb, R.J., and Pointing, P.J.. 1972. Sexual morph determination in the aphid, Acyrthosiphon pisum. Journal of Insect Physiology 18: 20292042.CrossRefGoogle Scholar
Lamb, R.J., and Pointing, P.J. 1975. The reproductive sequence and sex determination in the aphid, Acyrthosiphon pisum. Journal of Insect Physiology 21: 14431446.CrossRefGoogle Scholar
Lamb, R.J., Wise, I.L., and MacKay, P.A.. 1997. Photoperiodism and seasonal abundance of an aphid, Macrosiphum euphorbiae (Thomas), in oilseed flax. The Canadian Entomologist 129: 10491058.CrossRefGoogle Scholar
Lees, A.D. 1966. The control of polymorphism in aphids. Advances in Insect Physiology 3: 207277.CrossRefGoogle Scholar
Lees, A.D. 1989. The photoperiodic responses and phenology of an English strain of the pea aphid Acyrthosiphon pisum. Ecological Entomology 14: 6978.CrossRefGoogle Scholar
MacGillivray, M.E., and Anderson, G.B.. 1964. The effect of photoperiod and temperature on the production of gamic and agamic forms in Macrosiphum euphorbiae (Thomas). Canadian Journal of Zoology 42: 491510.CrossRefGoogle Scholar
MacKay, P.A. 1987. Production of sexual and asexual morphs and changes in reproductive sequence associated with photoperiod in the pea aphid, Acyrthosiphon pisum (Harris). Canadian Journal of Zoology 65: 26022606.CrossRefGoogle Scholar
MacKay, P.A. 1989. Clonal variation in sexual morph production in Acyrthosiphon pisum (Homoptera: Aphididae). Environmental Entomology 18: 558562.CrossRefGoogle Scholar
MacKay, P.A., Lamb, R.J., and Smith, M.A.H.. 1993. Variability in life history traits of the aphid, Acyrthosiphon pisum (Harris), from sexual and asexual populations. Oecologia 94: 330338.CrossRefGoogle ScholarPubMed
Mackenzie, A., and Dixon, A.F.G.. 1991. An ecological perspective of host alternation in aphids (Homoptera: Aphidinea: Aphididae). Entomologia Generalis 16: 265284.CrossRefGoogle Scholar
Mittler, T.E., and Wilhoit, L.. 1990. Sexual morph production by two regional biotypes of Myzus persicae (Homoptera: Aphididae) in relation to photoperiod. Environmental Entomology 19: 3235.CrossRefGoogle Scholar
Moran, N.A. 1991. Phenotypic fixation and genotypic diversity in the complex life cycle of the aphid Pemphigus betae. Evolution 45: 957970.CrossRefGoogle ScholarPubMed
Moran, N.A. 1992. The evolution of aphid life cycles. Annual Review of Entomology 37: 321348.CrossRefGoogle Scholar
Moran, N.A., and Whitham, T.G.. 1988. Evolutionary reduction of complex life cycles: loss of host-alternation in Pemphigus (Homoptera: Aphididae). Evolution 42: 717728.Google ScholarPubMed
Newton, C., and Dixon, A.F.G.. 1987. Cost of sex in aphids: size of males at birth and the primary sex ratio in Sitobion avenae (F.). Functional Ecology 1: 321326.CrossRefGoogle Scholar
Searle, J.B., and Mittler, T.E.. 1981. Embryogenesis and the production of males by apterous viviparae of the green peach aphid Myzus persicae in relation to photoperiod. Journal of Insect Physiology 27: 145153.CrossRefGoogle Scholar
Shands, W.A., Simpson, G. W., and Wave, H.E.. 1972. Seasonal population trends and productiveness of the potato aphid on swamp rose in northeastern Maine. United States Department of Agriculture Technical Bulletin 52.Google Scholar
Simon, J.C., Blackman, R.L., and Le Gallic, J.F.. 1991. Local variability in the life cycle of the bird cherry-oat aphid, Rhopalosiphum padi (Homoptera: Aphididae) in western France. Bulletin of Entomological Research 81: 315322.CrossRefGoogle Scholar
Smith, M.A.H., and MacKay, P.A.. 1989. Seasonal variation in the photoperiodic responses of a pea aphid population: evidence for long-distance movements between populations. Oecologia 81: 160165.CrossRefGoogle ScholarPubMed
Smith, M.A.H., and MacKay, P.A.. 1990. Latitudinal variation in the photoperiodic responses of populations of pea aphid (Homoptera: Aphididae). Environmental Entomology 19: 618624.CrossRefGoogle Scholar
Strathdee, A.T., Bale, J.S.Block, W.C.Webb, N.R.Hodkinson, I.D., and Coulson, S.J.. 1993. Extreme adaptive life-cycle in a high arctic aphid, Acyrthosiphon svalbardicum. Ecological Entomology 18: 254258.CrossRefGoogle Scholar
Ward, S.A., and Wellings, P.W.. 1994. Clonal ontogeny and aphids' sex ratios. pp. 397408in Leather, S.R., Watt, A.D.Mills, N.J., and Walters, K.F.A. (Eds.), Individuals, Populations and Patterns in Ecology. Intercept Ltd., Andover, U. K.Google Scholar
Ward, S.A., Leather, S.R., and Dixon, A.F.G.. 1984. Temperature prediction and the timing of sex in aphids. Oecologia 62: 230233.CrossRefGoogle ScholarPubMed
Weisser, W.W., and Stadler, B., 1994. Phenotypic plasticity and fitness in aphids. European Journal of Entomology 91: 7178.Google Scholar
Wöhrmann, K., Hales, D.F.Tomiuk, J.Schmiedt, E.M., and Rettenmeier, G., 1991. Induction of sexual forms in the rose aphid Macrosiphum rosae. Entomologia Experimentalis et Applicata 61: 1724.CrossRefGoogle Scholar