Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-26T04:04:04.004Z Has data issue: false hasContentIssue false

PHEROMONE-BASED AGGREGATION IN ORTHOTOMICUS CAELATUS (EICHHOFF) (COLEOPTERA: SCOLYTIDAE)

Published online by Cambridge University Press:  31 May 2012

Thomas W. Phillips
Affiliation:
Department of Entomology and Nematology, University of Florida, Gainesville, Florida, USA32611–0562
Thomas H. Atkinson
Affiliation:
Department of Entomology and Nematology, University of Florida, Gainesville, Florida, USA32611–0562
John L. Foltz
Affiliation:
Department of Entomology and Nematology, University of Florida, Gainesville, Florida, USA32611–0562

Abstract

Two field experiments were conducted to determine if Orthotomicus caelatus (Eichhoff) was attracted to pine bolts infested with conspecifics and to assess the roles of the sexes in attraction. Traps baited with pine bolts artificially infested with males attracted both males and females, but traps baited with uninfested bolts or bolts with females caught very low numbers of beetles. The addition of females to bolts with males reduced the attraction produced by males in a second experiment. Bolts with males and females did not reduce the attraction produced by other males in adjacent bolts, suggesting that females do not produce a masking pheromone. The pheromone system of O. caelatus is similar to those known for other species in the Ipini in which males initiate gallery construction, produce an attractant, and attract females and opportunistic males. Preliminary gas chromatographic analyses of extracts of hindguts and frass from males boring on pine bolts suggested the presence of ipsdienol and ipsenol, two commonly occurring pheromones in other species of the Ipini. The pheromone system of O. caelatus is discussed with regard to the complexity of the pine bark beetle guild in the southeastern United States.

Résumé

On a effectué deux expériences de terrain afin de savoir si Orthotomicus caelatus (Eichhoff) est attiré par des bûches de pin infestées d’individus conspécifiques et de comprendre le rôle des sexes dans le phénomène d’attraction. Des pièges appâtés de bûches de pin infestées artificiellement de mâles ont attiré des mâles et des femelles, alors que des pièges appâtés de bûches non infestées ou infestées de femelles seulement ont attiré peu de charançons. Dans une deuxième expérience, l’ajout de femelles à des bûches portant déjà des mâles a réduit l’effet d’attraction obtenu avec des mâles. Des bûches porteuses de mâles et de femelles n’ont pas réduit l’effet attirant de bûches adjacentes porteuses de mâles, indiquant que la femelle ne produit pas de phéromone masquante. Le système phéromonal de O. caelatus est similaire à ceux d’autres Ipini dont c’est le mâle qui initie la galerie, produit un attractant et attire des femelles et des mâles opportunistes. L’analyse chromatographique préliminaire d’extraits d’intestin et de fèces de mâles en train de forer des bûches de pin indique la présence d’ipsdiénol et d’ipsénol, deux phéromones communément rapportées chez d’atures Ipini. On discute du système phéromonal de O. caelatus en rapport avec la complexité de la guilde des charançons des pins du sud des USA.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alcock, J.A. 1982. Natural selection and communication among bark beetles. Fla. Ent. 65: 1732.CrossRefGoogle Scholar
Anderson, R.F. 1948. Host selection by the pine engraver. J. econ. Ent. 41: 596602.Google Scholar
Atkinson, T.H., Foltz, J.L., and Conner, M.D.. 1988. Flight patterns of phloem- and wood-boring Coleoptera (Scolytidae, Platypodidae, Curculionidae, Buprestidae, Cerambycidae) in a north Florida slash pine plantation. Environ. Ent. 17: 259265.CrossRefGoogle Scholar
Baker, W.L. 1972. Eastern Forest Insects. U.S.D.A. Forest Serv. Misc. Publ. 1175. 642 pp.Google Scholar
Beal, J.A., and Massey, C.L.. 1945. Bark beetles and ambrosia beetles (Coleoptera: Scolytidae): with special reference to species occurring in North Carolina. Duke Univ., School of Forest., Bull. 10. 178 pp., illus.Google Scholar
Birch, M.C., Svihra, P., Paine, T.D., and Miller, J.C.. 1980. Influence of chemically mediated behavior on host tree colonization by four cohabiting species of bark beetles. J. Chem. Ecol. 6: 395414.Google Scholar
Borden, J.H. 1967. Factors influencing the response of Ips confusus (Coleoptera: Scolytidae) to male attractant. Can. Ent. 99: 11641193.CrossRefGoogle Scholar
Borden, J.H. 1982. Aggregation pheromones. pp. 74–139 in Mitton, J.B., and Sturgeon, K.B. (Eds.), Bark Beetles in North American Conifers. University of Texas Press, Austin. 527 pp.Google Scholar
Borden, J.H., Hunt, D.W.A., Miller, D.R., and Slessor, K.N.. 1986. Orientation in forest Coleoptera: an uncertain outcome to responses by individual beetles to variable stimuli. pp. 97–109 in Payne, T.L., Birch, M.C., and Kennedy, C.E.J. (Eds.), Mechanisms in Insect Olfaction. Oxford University Press, Oxford. 364 pp.Google Scholar
Byers, J.A. 1981. Effect of mating on terminating aggregation during host colonization in the bark beetle, Ips paraconfusus. J. Chem. Ecol. 7: 11351147.Google Scholar
Coulson, R.N., Flamm, R.O., Pulley, P.E., Payne, T.L., Rykiel, E.J., and Wagner, T.L.. 1986. Response of the southern pine bark beetle guild (Coleoptera: Scolytidae) to host disturbance. Environ. Ent. 15: 850858.Google Scholar
Drooz, A.T. 1985. Insects of Eastern Forests. U.S.D.A. Forest Serv. Misc. Publ. 1426. 608 pp.Google Scholar
Franke, W., Heeman, V., Gerken, B., Renwick, J.A.A., and Vité, J.P.. 1977. 2-Ethyl-1,6-dioxaspiro [4.4]nonane, principal aggregation pheromone of Pityogenes calcographus (L.). Naturwissenschaften 64: 590591.Google Scholar
Furniss, M.M., and Livingston, R.L.. 1979. Inhibition by ipsenol of pine engraver attraction in northern Idaho. Environ. Ent. 8: 369372.CrossRefGoogle Scholar
Furniss, R.L., and Carolin, V.M.. 1977. Western Forest Insects. U.S.D.A. Forest Serv. Misc. Publ. 1339. 654 pp.Google Scholar
Giesen, H., Kohnle, U., Vité, J.P., Pan, M.-L., and Francke, W.. 1984. Das Aggregationspheromon des mediterranen Kiefernborkenkäfers Ips (Orthotomicus) erosus. Z. ang. Ent. 98: 9597.Google Scholar
Harring, C.M., and Vité, J.P.. 1975. “Ipsenol,” der Populations lockstroff des krummzahnigen Tannenborkenkäfers. Naturwissenschaften 62: 488.CrossRefGoogle Scholar
Kirkendall, L.R. 1983. The evolution of mating systems in bark and ambrosia beetles (Coleoptera: Scolytidae and Platypodidae). Zool. J. Soc. 77: 293352.Google Scholar
Lanier, G.N., and Wood, D.L.. 1975. Specificity of response to pheromones in the genus Ips (Coleoptera: Scolytidae). J. Chem. Ecol. 1: 923.Google Scholar
Leufvén, A., Bergström, G., and Falsen, E.. 1984. Interconversion of verbenols and verbenone by identified yeasts isolated from the spruce bark beetle Ips typographus. J. Chem. Ecol. 10: 13491361.Google Scholar
Lindgren, B.S. 1983. A multiple funnel trap for scolytid beetles (Coleoptera). Can. Ent. 115: 299302.CrossRefGoogle Scholar
Paiva, M.R., Pessoa, M.F., and Vité, J.P.. 1988. Reduction in the pheromone attractant response of Orthotomicus erosus (.) and Ips sexdentatus Boem. (Col., Scloytidae). J. Appl. Ent. 106: 198200.Google Scholar
Phillips, T.W., Nation, J.L., Wilkinson, R.C., and Foltz, J.L.. 1989. Secondary attraction and field activity of beetle-produced volatiles in the black turpentine beetle, Dendroctonus terebrans. J. Chem. Ecol. 15: 15131533.Google Scholar
Phillips, T.W., Wilkening, A.J., Atkinson, T.H., Nation, J.L., Wilkinson, R.C., and Foltz, J.L.. 1988. Synergism of turpentine and ethanol as attractants for certain pine-infesting beetles. Environ. Ent. 17: 456462.Google Scholar
Reid, R.W. 1955. The bark beetle complex associated with lodgepole pine slash in Alberta. Can. Ent. 87: 311323.Google Scholar
Silverstein, R.M., Rodin, J.O., and Wood, D.L.. 1966. Sex attractants in frass produced by male Ips confusus in ponderosa pine. Science 154: 509510.CrossRefGoogle Scholar
Smith, M.T., Busch, G.R., Payne, T.L., and Dickens, J.C.. 1988. Antennal olfactory responsiveness of three sympatric Ips species [Ips avulsus (Eichhoff), Ips calligraphus (Germar), Ips grandicollis (Eichhoff)], to intra- and interspecific behavioral chemicals. J. Chem. Ecol. 14: 12891304.CrossRefGoogle Scholar
Stark, R.W. 1965. Recent trends in forest entomology. A. Rev. Ent. 10: 303324.CrossRefGoogle Scholar
Vité, J.P., Hedden, R., and Mori, K.. 1976. Ips grandicollis: field response; to optically pure pheromone. Naturwissenschaften 63: 4344.CrossRefGoogle ScholarPubMed
Vité, J.P., Ohloff, G., and Billings, R.F.. 1978. Pheromone chirality and integrity of aggregation response in southern species of the bark beetle Ips sp. Nature 272: 817818.CrossRefGoogle Scholar
Wood, S.L. 1982. The bark and ambrosia beetles of North and Central America (Coleoptera: Scolytidae), a taxonomic monograph. Great Basin Naturalist Mem. 6. 1359 pp.Google Scholar