Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T14:08:23.740Z Has data issue: false hasContentIssue false

New Early Eocene brown lacewings (Neuroptera: Hemerobiidae) from western North America

Published online by Cambridge University Press:  02 April 2012

Vladimir N. Makarkin*
Affiliation:
Institute of Biology and Soil Sciences, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690022 Russia
S. Bruce Archibald
Affiliation:
Department of Organismic and Evolutionary Biology, Harvard University, Museum of Comparative Zoology, 26 Oxford Street, Cambridge, Massachusetts 02138, United States of America
John D. Oswald
Affiliation:
Department of Entomology, Texas A&M University, College Station, Texas 77843-2475, United States of America
*
1 Corresponding author (e-mail: [email protected]).

Abstract

Two Early Eocene hemerobiid species from the Okanagan Highland deposits of western North America are described: Wesmaelius mathewesisp. nov. (Quilchena, British Columbia, Canada) and Cretomerobius wehrisp. nov. (Republic, Washington, United States of America.). A poorly preserved specimen, possibly Hemerobiidae (Driftwood Canyon, British Columbia, Canada) is discussed. The systematic position of the genus Cretomerobius within the Hemerobiidae is unclear, but it appears to belong within (or possibly as the sister group to) the poorly differentiated Drepanacrinae–Megalominae–Drepanepteryginae grade of subfamilies. Wesmaelius mathewesi is the first fossil species to be assigned, although with some uncertainty, to this otherwise speciose and widely distributed extant genus. It also represents the oldest known material of the subfamily Hemerobiinae. Meso hemerobius jeholensis Ping is removed from the Hemerobiidae and treated as Neuroptera incertae sedis.

Résumé

On trouvera ici la description de deux espèces d'hémérobiidés provenant des sédiments des terres hautes de l'Okanagan dans l'ouest de l'Amérique du Nord, Wesmaelius mathewesisp. nov. (Quilchena, Colombie-Britannique, Canada) et Cretomerobius wehrisp. nov. (Republic, Washington, États-Unis d'Amérique). De plus, un spécimen mal conservé (Driftwood Canyon, Colombie-Britannique, Canada) qui est peut-être un hémérobiidé fait l'objet d'une discussion. La position systématique de Cretomerobius au sein des Hemerobiidae est incertaine, mais le genre semble appartenir au grade mal différencié des sous-familles Depranacrinae–Megalominae–Drepanepteryginae ou alors il peut en être le groupe-soeur. Wesmaelius mathewesi est la première espèce fossile décrite dans ce genre contemporain, par ailleurs riche en espèces et à répartition étendue. C'est aussi le matériel fossile le plus ancien trouvé dans la sous-famille des Hemerobiinae. Mesohemerobius jeholensis Ping est retiré des Hemerobiidae et traité comme une espèce incertae sedis de Neuroptera.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Archibald, S.B., Mathewes, R.W. 2000. Early Eocene insects from Quilchena, British Columbia, and their paleoclimatic implications. Canadian Journal of Zoology 78: 1441–62Google Scholar
Archibald, S.B., Farrell, B.D. 2003. Wheeler's dilemma. Acta Zoologica Cracoviensia 46(Supplement — Fossil insects): 1723Google Scholar
Bechly, G. 1998. Santana — Forschungsgeschichte und Fauna. Fossilien 1998: 148–56 [Korb, Germany: Goldschneck-Verlag]Google Scholar
Dolin, V.G., Panfilov, D.V., Ponomarenko, A.G., Pritykina, L.N. 1980. Fossil insects of the Mesozoic. Kiev, Ukraine: Naukova DumkaGoogle Scholar
Fraser, F.C. 1951. A revision of the Madagascar Neuroptera with a key to their identifications and descriptions of new species. I. Osmylidae, Hemerobiidae and Chrysopidae. Naturaliste Malgache 3: 1531Google Scholar
Grainger, N.C., Villeneuve, M.E., Heaman, L.M., Anderson, R.G. 2001. New U–Pb and Ar/Ar isotopic age constraints on the timing of Eocene magmatism, Fort Fraser and Nechako River map areas, central British Columbia. Canadian Journal of Earth Sciences 38: 679–96Google Scholar
Greenwood, D.R., Wing, S.L. 1995. Eocene continental climates and latitudinal temperature gradients. Geology (Boulder) 23: 1044–8Google Scholar
Henriksen, K.L. 1922. Eocene insects from Denmark. Danmarks Geologiske Undersogelse 2(37): 136Google Scholar
Illies, H. 1941. Das Insekten führende Alttertiär von Havighorst. Vorläufige Mitteilung. Zeitschrift fuer Geschiebeforschung und Flachlandgeologie 17: 1624Google Scholar
Jarzembowski, E.A. 1980. Fossil insects from the Bembridge Marls, Palaeogene of the Isle of Wight, southern England. Bulletin of the British Museum (Natural History) Geology 33: 237–93Google Scholar
Kimmins, D.E. 1928. New and little known Neuroptera of Central America. EOS: Revista Espanola de Entomologia 4: 363–70Google Scholar
Kimmins, D.E. 1959. Ephemeroptera, Plecoptera and Neuroptera. pp 63–7 in Ruwenzori Expedition, 1952. Volume 2. London: British Museum (Natural History)Google Scholar
Klimaszewski, J., Kevan, DK McE. 1987. The brown lacewing flies of Canada and Alaska (Neuroptera; Hemerobiidae). Part II. The genus Wesmaelius Krüger. Neuroptera International 4: 153204, 245–74Google Scholar
Krüger, L. 1923. Neuroptera succinica baltica. Die im baltischen Bernstein eingeschlossenen Neuroptera des Westpreussischen Provinzial-Museums (heute Museum für Naturkunde und Vorgeschichte) in Danzig. Stettiner Entomologische Zeitung 84: 6892Google Scholar
Larsson, S.G. 1975. Palaeobiology and mode of burial of the insects of the Lower Eocene Mo-clay of Denmark. Bulletin of the Geological Society of Denmark 24: 193209Google Scholar
Makarkin, V.N. 1991. Miotsenovye setchatokrylye (Neuroptera) severnogo Kavkaza i Sikhote-Alinya [Miocene lacewings (Neuroptera) from the northern Caucasus and Sikhote-Alin]. Paleontologicheskii Zhurnal, Moscow 1991(1): 57–68 [English translation: Paleontological Journal 25: 5565 (1992)]Google Scholar
Makarkin, V.N. 1994. Upper Cretaceous Neuroptera from Russia and Kazakhstan. Annales de la Societe Entomologique de France 30: 283–92CrossRefGoogle Scholar
Makarkin, V.N. 1995. Notes on Palearctic Hemerobiidae (Neuroptera). I. Introduction and genus Wesmaelius Krüger, 1922. Part 1. Subgenus Wesmaelius. Far Eastern Entomologist 24: 113Google Scholar
Makarkin, V.N. 1996. Notes on Palearctic Hemerobiidae (Neuroptera). 1. Introduction and genus Wesmaelius Krüger, 1922. Part 2. Subgenus Kimminsia Killington 1937. Far Eastern Entomologist 31–32: 134Google Scholar
Makarkin, V.N. 1998. New Tertiary Neuroptera from the Russian Far East. Tertiary Research 18: 7783Google Scholar
Mathewes, R.W., Brooke, R.C. 1971. Fossil Taxodiaceae and new angiosperms from Quilchena, British Columbia. Syesis 4: 209–16Google Scholar
Monserrat, V.J. 1990. A systematic checklist of the Hemerobiidae of the world (Insecta: Neuroptera). pp 215–62 in Mansell, M.W., Aspöck, H. (Eds), Advances in Neuropterology. Proceedings of the Third International Symposium on Neuropterology. Pretoria: South African Department of Agricultural DevelopmentGoogle Scholar
Monserrat, V.J. 1997. Revisión del género Megalomus de Latinoamérica (Neuroptera, Hemerobiidae). Fragmenta Entomologica 29: 123206Google Scholar
Monserrat, V.J. 2000 [2001]. New data on the brown lacewings from Asia (Neuroptera: Hemerobiidae). Journal of Neuropterology 3: 6197Google Scholar
Monserrat, V.J., Deretsky, Z. 1999. New faunistical, taxonomic and systematic data on brown lacewings (Neuroptera: Hemerobiidae). Journal of Neuropterology 2: 4566Google Scholar
Navás, L. 1910. Névroptères nouveaux de l'Orient. Revue Russe d'Entomologie 10: 190–4Google Scholar
Navás, L. 1936. Mission Scientifique de l'Omo. Tome III. Fascicule 19. Neuroptera, Embioptera, Plecoptera, Ephemeroptera et Trichoptera. Memoires du Museum National d'Histoire Naturelle 4: 101–28Google Scholar
Nel, A. 1990 [1991]. Nouveaux insectes neuropteroïdes fossiles de l'Oligocene de France (Neuroptera et Megaloptera). Bulletin du Museum National d'Histoire Naturelle Serie C Geologie 12: 327–49Google Scholar
Oswald, J.D. 1993 a. Revision and cladistic analysis of the world genera of the family Hemerobiidae (Insecta: Neuroptera). Journal of the New York Entomological Society 101: 143299Google Scholar
Oswald, J.D. 1993 b. A new genus and species of brown lacewing from Venezuela (Neuroptera: Hemerobiidae), with comments on the evolution of the hemerobiid forewing radial vein. Systematic Entomology 18: 363–70Google Scholar
Oswald, J.D. 1994. A new phylogenetically basal subfamily of brown lacewings from Chile (Neuroptera: Hemerobiidae). Entomologica Scandinavica 25: 295302CrossRefGoogle Scholar
Oswald, J.D. 1999 [2000]. The brown lacewing genus Notiobiella (Neuroptera: Hemerobiidae) from Dominican amber. Journal of the New York Entomological Society 107: 297303Google Scholar
Panfilov, D.V. 1980. New representatives of lacewings (Neuroptera) from the Jurassic of Karatau. pp 82111in Dolin, V.G., Panfilov, D.V., Ponomarenko, A.G., Pritykina, L.N., Fossil insects of the Mesozoic. Kiev, Ukraine: Naukova DumkaGoogle Scholar
Ping, C. 1928. Cretaceous fossil insects of China. Paleontologia Sinica (Series B) 13: 156.Google Scholar
Pictet-Baraban, F.J., Hagen, H.A. 1856. Die im Bernstein befindlichen Neuropteren der Vorwelt. pp 41125in Berendt, G.C. (Ed), Die im Bernstein befindlichen organischen Reste der Vorwelt gesammelt 2. Berlin: Nicholaischen BuchhandlungGoogle Scholar
Poinar, G.O. Jr 1992. Life in amber. Stanford, California: Stanford University PressGoogle Scholar
Poinar, G.O. Jr, Poinar, R. 1999. The amber forest. Princeton, New Jersey: Princeton University PressGoogle Scholar
Pongrácz, A. 1935. Die eozäne Insektenfauna des Geiseltales. Nova Acta Leopoldina 2: 485572Google Scholar
Ponomarenko, A.G. 1992. New lacewings (Insecta, Neuroptera) from the Mesozoic of Mongolia. pp 101–11 in Grunt, T.A. (Ed), New taxa of the fossil invertebrates of Mongolia. Transactions of the Joint Soviet–Mongolian Paleontological Expedition 41. [Moscow: Nauka Press]Google Scholar
Read, P.B. 2000. Geology and industrial minerals of the Tertiary basins, south-central British Columbia. British Columbia Geological Survey GeoFile 2000–3Google Scholar
Rumbucher, K. 1995. Hemerobiidae (Insecta, Planipennia), eine bisher noch nicht entdeckte Familie der Santana Formation aus der brasilianischen Unterkreide. Bericht der Naturforschenden Gesellschaft Augsburg 55: 4661Google Scholar
Rust, J. 1999. Fossil insects from the Fur and Olst Formations (“mo-clay”) of Denmark (upper Paleocene / lowermost Eocene). pp 135–9 in Proceedings of the First Paleoentomological Conference, Moscow 1998. Bratislava, Slovakia: AMBA projects AM/PFICM98/1.99Google Scholar
Scudder, S.H. 1878. Additions to the insect-fauna of the Tertiary beds at Quesnel, British Columbia. Geological Survey of Canada, Report of Progress 1876–1877. pp 457–64Google Scholar
Scudder, S.H. 1890. The Tertiary insects of North America. Report of the United States Geological Survey of the Territories 13 [Washington, District of Columbia: Government Printing Office]Google Scholar
Tjeder, B. 1961. Neuroptera–Planiepnnia. The Lace-wings of Southern Africa. 4. Family Hemerobiidae. pp 296408in Hanström, B., Brinck, P., Rudebec, G. (Eds), South African Animal Life. Volume 8. Stockholm: Swedish Natural Science Research CouncilGoogle Scholar
Wehr, W.C., Barksdale, L.L. 1996. A checklist of fossil insects from Republic, Washington. Washington Geology 24(2): 29Google Scholar
Wehr, W.C., Hopkins, D.Q. 1994. The Eocene Orchards and Gardens of Republic, Washington. Washington Geology 22(3): 2734Google Scholar
Wehr, W.C., Manchester, S.R. 1996. Paleobotanical significance of Eocene flowers, fruits and seeds from Republic, Washington. Washington Geology 24(2): 25–7Google Scholar
Weitschat, W., Wichard, W. 1998. Atlas der Pflanzen und Tiere im Baltischen Bernstein. München, Germany: Dr. Friedrich Pfeil VerlagGoogle Scholar
White, J.M. 1997. 03-JMW-1997: Palynological report on 3 samples of Eocene and younger ages from Ootsa Lake and Endako formations, NTS 93 K/2, F/15, F/16, British Columbia. Paleontological report provided to B Struik, Geological Survey of Canada – Vancouver, Department of Natural Resources CanadaGoogle Scholar
Wilson, M.V.H. 1977 a. New records of insect families from the freshwater Middle Eocene of British Columbia. Canadian Journal of Earth Sciences 14: 1139–55Google Scholar
Wilson, M.V.H. 1977 b. Middle Eocene freshwater fishes from British Columbia. Royal Ontario Museum Life Sciences Contributions 113: 151Google Scholar
Wing, S.L., Greenwood, D.R. 1993. Fossils and fossil climate: the case for equable continental interiors in the Eocene. pp 243–53 in Allen, J.R.L., Hoskins, B.J., Sellwood, B.W., Spicer, R.A. (Eds), Paleoclimates and their modeling with special reference to the Mesozoic Era. Philosophical Transactions of the Royal Society of London Series B Biological Sciences 341Google Scholar
Wolfe, J.A. 1979. Temperature parameters of humid to mesic forests of eastern Asia and relation to forests of other regions of the Pacific Northern Hemisphere and Australasia. United States Geological Survey Professional Paper 1106Google Scholar
Wolfe, J.A., Wehr, W.C. 1987. Middle Eocene Dicotyledonous Plants from Republic, Northeast Washington. United States Geological Survey Bulletin 1597Google Scholar
Zherikhin, V.V. 1980. Class Insecta. Insects. pp 4097in Menner, V.V. (Editor-in-chief). The development and changes in invertebrates at the Mesozoic–Cenozoic boundary. Bryozoan, arthropods, echinoderms. Moscow: Nauka PressGoogle Scholar