Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-28T11:08:25.963Z Has data issue: false hasContentIssue false

NEMATODE CONTROL OF BLACK ARMY CUTWORM (LEPIDOPTERA: NOCTUIDAE) UNDER LABORATORY AND FIELD CONDITIONS

Published online by Cambridge University Press:  31 May 2012

R.J. West
Affiliation:
Natural Resources Canada - Canadian Forest Service Newfoundland and Labrador Region, PO Box 6028, St. John's, Newfoundland, Canada AlC 5X8
T.C. Vrain
Affiliation:
Natural Resources Canada - Canadian Forest Service Newfoundland and Labrador Region, PO Box 6028, St. John's, Newfoundland, Canada AlC 5X8

Abstract

Four steinernematid strains, Steinernema carpocapsae All strain, S. carpocapsae Umeå strain, S. feltiae Lie strain, and S. feltiae strain 27, were evaluated in laboratory and field tests as potential agents for the control of the black army cutworm, Actebia fennica (Tauscher). Although each of the six instars was susceptible to attack, incidences of infection were highest and generally over 60% for the third, fourth, and fifth instars when exposed to 100 infective juvenile nematodes in petri dishes. Fifth-instar larvae exposed for 1 week to soil containing 4000 infective juveniles in a 1:1:1 mixture of the L1c, All, and Umeå strains were most frequently infected with the L1c strain when reared at 10 and 12 °C and with the All strain when reared at 14 and 16 °C. One hundred thousand infective juveniles of the L1c, All, and Umeå strains and strain 27, alone and in various combinations, and applied by either a spray or soil-plug inoculation, killed black army cutworm larvae caged in the field for 1 week with treated black spruce seedlings and provided protection of current and 1 -year-old foliage. Treatments that included strain 27 provided the best protection when daily mean soil temperatures were 7–11 °C in comparison to treatments that included the Umeå or All strains, whereas treatments that included the All strain as a component appeared to be more effective than treatments containing the L1c and Umeå strains when daily mean soil temperatures were 16–17 °C.

Résumé

Quatre souches de nematodes du genre Steinernema, soit Steinernema carpocapsae, souche All; S. carpocapsae, souche Umeå; S. feltiae, souche L1c; et S. feltiae, souche 27, ont fait l’objet d’essais en laboratoire et au champ visant à évaluer leur potentiel à titre d’agents de lutte contre la légionnaire noire, Actebia fennica (Tauscher). Selon les résultats de ces essais, les larves de chacun des six stades sont sensibles aux attaques, mais la fréquence d’infection est le plus élevée et atteint généralement plus de 60% chez les larves parvenues aux troisième, quatrième et cinquième stades lorsqu’elles sont exposées à 100 juvéniles infectants dans des boîtes de Pétri. Les larves du cinquième stade que l’on a exposées pendant 1 semaine à de la terre renfermant un mélange de 4000 juvéniles infectants, réalisé à partir des souches L1c, All et Umeå dans une proportion de 1 : 1 : 1, sont plus souvent infectées par la souche L1c lorsqu’on les cultive sous des températures de 10 et 12 °C et par la souche All, lorsqu’on les cultive sous des températures de 14 et 16 °C. L’application de 100 000 juvéniles infectants des souches L1c, All et Umeå et de la souche 27, utilisées séparément et selon divers mélanges, que l’on a réalisée par pulvérisation ou par l’injection de cartouches dans le sol, a tué les larves de la légionnaire noire qui avaient été mises en cage dans le champ pendant 1 semaine avec des semis d’épinettes noires traités; cette méthode a également permis de protéger le feuillage actuel et le feuillage de 1 an. Par comparaison aux traitements incluant les souches Umeå ou All, ceux qui comprennent la souche 27 fournissent la meilleure protection lorsque la température moyenne quotidienne du sol atteint de 7–11 °C, tandis que les traitements qui renferment entre autres la souche All semblent être plus efficaces que ceux qui contiennent les souches L1c et Umeå lorsque la température moyenne quotidienne du sol est de 16–17 °C.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Curran, J. 1990. Molecular techniques in taxonomy. pp. 6374in Gaugler, R., and Kaya, H.K. (Eds.), Entomopathogenic Nematodes in Biological Control. CRC Press, Boca Raton, FL.Google Scholar
Dutky, S.R., Thompson, J.V., and Cantwell, G.E.. 1964. A technique for mass propagation of the DD-136 nematode. Journal of Insect Pathology 6: 417422.Google Scholar
Finney-Crawley, J.R. 1985. Isolation of cold tolerant Steinemematid nematodes in Canada. Journal of Nematology 17: 496.Google Scholar
Hamblin, A.P. 1981. Filter-paper method for routine measurement of field water potential. Journal of Hydrology 53: 355360.CrossRefGoogle Scholar
Mize, C.W., and Schultz, R.C.. 1985. Comparing treatment means correctly and appropriately. Canadian Journal of Forestry Research 15: 11421148.CrossRefGoogle Scholar
Morris, O.N. 1985. Susceptibility of 31 species of agricultural insect pests to the entomogenous nematodes Steinernema feltiae and Heterorhabditis A. fennicateriophora. The Canadian Entomologist 117: 401407.CrossRefGoogle Scholar
Reid, A.P., and Hominick, W.H.. 1993. Isolation and use of a species-specific clone for the identification of the rhabditid entomopathogenic nematode Steinernema feltiae (Filipjev, 1934). Fundamental and Applied Nematology 16: 115120.Google Scholar
SAS Institute Inc. 1989. SAS/STAT User's Guide, Version 6, 4th ed., Volume 1. SAS Institute Inc., Cary, NC. 943 pp.Google Scholar
Shapiro, S.S., and Wilk, M.B.. 1965. An analysis of variance test for normality (complete samples). Biometrika 52: 591611.CrossRefGoogle Scholar
Snedecor, G.W., and Cochran, W.G.. 1980. Statistical Methods. Iowa State University Press, Ames, IA. 507 pp.Google Scholar
Vrain, T.C., Walkarchuk, D.A., Levesque, A., and Hamilton, R.I.. 1992. Intraspecific rDNA Restriction Length Polymorphism in the Xiphinema americanum group. Fundamental and Applied Nematology 15: 563573.Google Scholar
West, R.J. 1991. Notes on the biology and control of the black army cutworm in recently burned areas. Proceedings of the Entomological Society of Ontario 122: 5363.Google Scholar
Wood, G.W., and Neilson, W.T.A.. 1956. Notes on the black army cutworm, Actebiafennica (Tausch.) (Lepidoptera: Phalaenidae), a pest of low-bush blueberry in New Brunswick. The Canadian Entomologist 88: 9396.CrossRefGoogle Scholar