Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-28T07:00:49.608Z Has data issue: false hasContentIssue false

A MULTIPLE-COHORT MODEL FOR SIMULATING JACK PINE BUDWORM (LEPIDOPTERA: TORTRICIDAE) DEVELOPMENT UNDER VARIABLE TEMPERATURE CONDITIONS

Published online by Cambridge University Press:  31 May 2012

T.J. Lysyk
Affiliation:
Forestry Canada, Great Lakes Forestry Centre, PO Box 490, Sault Ste. Marie, Ontario, Canada P6A 5M7

Abstract

A phenology model for jack pine budworm, Choristoneura pinus pinus Freeman, is presented. Linear and nonlinear relationships between temperature and the development of overwintering larvae, instars 2–7, and pupae are determined, as is variation in the development of each instar. The model uses as input daily maximum and minimum temperatures corrected for the effects of bark and bud microclimate and simulates the number of insects in each instar on a given calendar date. Variation in development of all stages is included. Simulations matched observed data well for north-central and northwestern Ontario in 1986, but overestimated time of development for northwestern Ontario in 1987. Simulations under low, medium, and high temperature conditions revealed that a nonlinear equation for rate of development was necessary for simulating emergence whereas linear rate equations were adequate for simulating development of the feeding instars. The combined effect of bud and bark microclimate on model performance was equal to that which resulted from the use of nonlinear developmental equations.

Résumé

On a élaboré un modèle phénologique de la tordeuse du pin gris, Choristoneura pinus pinus Freeman. On a déterminé les relations linéaires et non-linéaires entre la température et le développement des larves hivernantes, pour les stades 2–7 et les pupes, de même que la variation associée au développement de chaque stade. Le modèle utilise les températues journalières maximum et minimum après correction pour l’effet du microclimat de l’écorce et des bourgeons, et simule le nombre d’insectes de chaque stade à une date donnée. La variation du développement est incluse pour chaque stade. Les simulations correspondaient bien aux observations pour le centre-nord et le nord-ouest ontarien en 1986, mais elles ont surestimé la durée du développement pour le nord-ouest en 1987. Des simulations en conditions de température froide, moyenne et élevée ont démontré la nécessité d’une équation non-linéaire pour décrire l’émergence, alors que des équations linéaires suffisaient pour simuler le développement des stades qui s’alimentent. L’effet combiné du microclimat de l’écorce et des bourgeons sur l’efficacité du modèle était égal à celui résultant de l’utilisation d’équations non-linéaires de développement.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Foltz, J.L., Knight, F.B., Allen, D.C., and Mattson, W.J.. 1968. A technique for sampling populations of the jack-pine budworm. For. Sci. 14: 277281.Google Scholar
Hodson, A.C., and Zehngraf, P.J.. 1946. Budworm control in jack pine by forest management. J. For. 44: 198200.Google Scholar
Lejeune, R.R., and Black, W.F.. 1947. The influence of jack pine pollen on the epidemiology of the jack pine budworm. Dep. Agric. For. Insect Invest. Bi-mon. Prog. Rep. 3(2): 4.Google Scholar
Lejeune, R.R., and Black, W.F.. 1950. Populations of larvae of the jack pine budworm. For. Chron. 26: 152156.Google Scholar
Lysyk, T.J., and Axtell, R.C.. 1987. A simulation model of house fly (Diptera: Muscidae) development in poultry manure. Can. Ent. 119: 427437.Google Scholar
Lysyk, T.J., and Nealis, V.G.. 1988. Temperature requirements for development of the jack pine budworm (Lepidoptera: Tortricidae) and two of its parasitoids (Hymenoptera). J. econ. Ent. 81: 10451051.Google Scholar
Nealis, V. 1987. The number of instars in jack pine budworm, Choristoneura pinus pinus Free. (Lepidoptera: Tortricidae), and the effect of parasitism on head capsule width and development time. Can. Ent. 119: 773777.Google Scholar
Nealis, V.G., and Lysyk, T.J.. 1988. Sampling overwintering jack pine budworm, Choristoneura pinus pinus Free. (Lepidoptera: Tortricidae) and two of its parasitoids (Hymenoptera). Can. Ent. 120: 11011111.CrossRefGoogle Scholar
Nicolai, V. 1986. The bark of trees: thermal properties, microclimate and fauna. Oecologia 69: 148160.Google Scholar
Régnière, J. 1982. A process-oriented model of spruce budworm phenology (Lepidoptera: Tortricidae). Can. Ent. 114: 811825.CrossRefGoogle Scholar
Régnière, J. 1987. Temperature-dependent development of eggs and larvae of Choristoneura fumiferana (Clem.) (Lepidoptera: Tortricidae) and simulation of its seasonal history. Can. Ent. 119: 717728.Google Scholar
Schoolfield, R.M., Sharpe, P.J.H., and Magnuson, G.E.. 1981. Nonlinear regression of biological temperature-dependent rate models based on absolute reaction-rate theory. J. Theor. Biol. 88: 719731.CrossRefGoogle ScholarPubMed
Sharpe, P.J.H., and DeMichele, D.W.. 1977. Reaction kinetics of poikilotherm development. J. Theor. Biol. 64: 649670.Google Scholar
Shepherd, R.F. 1958. Factors controlling the internal temperatures of spruce budworm larvae, Choristoneura fumiferana (Clem.) Can. J. Zool. 36: 779786.Google Scholar
Wagner, T.L., Wu, H., Sharpe, P.J.H., and Coulson, R.N.. 1984 a. Modeling distributions of insect development time: a literature review and application of the Weibull function. Ann. ent. Soc. Am. 77: 475487.Google Scholar
Wagner, T.L., Wu, H., Sharpe, P.J.H., Schoolfield, R.M., and Coulson, R.N.. 1984 b. Modeling insect development rates: a literature review and application of a biophysical model. Ann. ent. Soc. Am. 77: 208225.CrossRefGoogle Scholar
Wellington, W.G. 1950. Effects of radiation on the temperatures of insectan habitats. Sci. Agric. 30(5): 209234.Google Scholar