Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-13T00:08:57.921Z Has data issue: false hasContentIssue false

Molecular identification of the swede midge (Diptera: Cecidomyiidae)

Published online by Cambridge University Press:  02 April 2012

Juerg E. Frey*
Affiliation:
Molecular Diagnostics Laboratory, Department of Crop Protection, Agroscope FAW Wädenswil, Swiss Federal Research Station for Horticulture, CH-8820 Wädenswil, Switzerland
Beatrice Frey
Affiliation:
Molecular Diagnostics Laboratory, Department of Crop Protection, Agroscope FAW Wädenswil, Swiss Federal Research Station for Horticulture, CH-8820 Wädenswil, Switzerland
Robert Baur
Affiliation:
Extension Service for Vegetable Production, Agroscope FAW Wädenswil, Swiss Federal Research Station for Horticulture, CH-8820 Wädenswil, Switzerland
*
1Corresponding author (e-mail: [email protected]).

Abstract

Early detection of pest infestation is a prerequisite for sustainable crop protection. However, many pest species are difficult to detect and thus infestation is diagnosed from damage observed on the respective crop. This diagnosis is often made too late for implementation of crop protection measures, and serious crop losses may result. The swede midge, Contarinia nasturtii Kieffer, is a major pest of Brassica L. (Brassicaceae) vegetables in Europe that has recently invaded North America. With its small size and short adult life-span, and the cryptic lifestyle of the larvae feeding at the growing points of its host plants, it is usually detected only after damage has already occurred. Furthermore, because field-trapped specimens are rarely fully intact, it is extremely difficult to identify. Therefore, we developed a species-specific molecular diagnostic method that enables reliable identification of swede midge from various sources such as alcohol or sticky glue traps. The method enables large-scale screening of field-trapped specimens and is used to evaluate the attractiveness and specificity of pheromone traps that are currently under development.

Résumé

La protection durable des cultures exige une détection précoce des infestations de ravageurs. Cependant, plusieurs espèces de ravageurs sont difficiles à déceler et, conséquemment, l'infestation n'est reconnue qu'au moment où des dommages apparaissent dans les cultures en question. Il est alors souvent trop tard pour mettre en oeuvre des mesures de protection des cultures, ce qui peut mener à des pertes agricoles importantes. La cécidomyie du chou-fleur, Contarinia nasturtii Kieffer, qui est un important ravageur des légumes du genre Brassica L. (Brassicaceae) en Europe, a récemment envahi l'Amérique du Nord. À cause de sa petite taille, de la courte durée de vie des adultes et du mode de vie caché des larves qui se nourrissent aux points de croissance des plantes hôtes, l'insecte n'est ordinairement remarqué qu'une fois que des dommages ont été faits. De plus, il est extrêmement difficile à identifier parce que les spécimens piégés en nature sont rarement tout à fait intacts. Nous avons donc mis au point une méthode moléculaire d'identification spécifique à cette espèce qui permet de déterminer de façon fiable les cécidomyies provenant de diverses sources, comme les pièges à alcool et à glu. La méthode permet le triage à grande échelle des spécimens récoltés en nature dans des pièges et sert à évaluer l'attraction et la spécificité des pièges à phéromones qui sont actuellement en train d'être mis au point.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barnes, H.F. 1946. Gall midges of economic importance. Volume II. Gall midges of fodder crops. London: Crosby Lockwood and SonsGoogle Scholar
Brunner, P.C., Fleming, C., Frey, J.E. 2002. A molecular identification key for economically important thrips species (Thysanoptera: Thripidae) using direct sequencing and a PCR–RFLP-based approach. Agricultural and Forest Entomology 4: 127–36CrossRefGoogle Scholar
Cha, R.S., Zarbl, H., Keohavong, P., Thilly, W.G. 1992. Mismatch amplification mutation assay (MAMA): application to the c-H-ras gene. PCR Methods and Applications 2: 1420CrossRefGoogle Scholar
Cipriano, F., Palumbi, S.R. 1999. Genetic tracking of a protected whale. Nature (London) 397: 307–8CrossRefGoogle Scholar
DeSalle, R., Birstein, V.J. 1996. PCR identification of black caviar. Nature (London) 381: 197–8CrossRefGoogle Scholar
Dilworth, E., Frey, J.E. 2000 a. A rapid method for high throughput DNA extraction from plant material for PCR amplification. Plant Molecular Biology Reporter 18: 61–4CrossRefGoogle Scholar
Dilworth, E., Frey, J.E. 2000 b. Erratum: a rapid method for high throughput DNA extraction from plant material for PCR amplification. Plant Molecular Biology Reporter 18: 157CrossRefGoogle Scholar
Frey, J.E., Frey, B. 1995. Molecular identification of six species of scales (Quadraspidiotus sp.) by RAPD-PCR: assessing the field-specificity of pheromone traps. Molecular Ecology 4: 777–80CrossRefGoogle Scholar
Hallett, R.H., Heal, J.D. 2001. First Nearctic record of the swede midge (Diptera: Cecidomyiidae), a pest of cruciferous crops from Europe. The Canadian Entomologist 133: 713–5CrossRefGoogle Scholar
Harris, M.O., Foster, S.P. 1999. Gall midges. pp 2749in Hardie, J. (Ed), Pheromones of non-lepidopteran insects associated with agricultural plants. Oxford: CAB InternationalGoogle Scholar
Hebert, P.D.N., Cywinska, A., Ball, S.L., de Waard, J.R. 2003 a. Biological identifications through DNA barcodes. Proceedings of the Royal Society of London, Series B: Biological Sciences 270: 313–22CrossRefGoogle ScholarPubMed
Hebert, P.D.N., Ratnasingham, S., de Waard, J.R. 2003 b. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society of London, Series B: Biological Sciences 270 (Supplement 03BL0066): 14CrossRefGoogle ScholarPubMed
Hill, D.S. 1987. Agricultural insect pests of temperate regions and their control. London: Cambridge University PressGoogle Scholar
Hillbur, Y., El-Sayed, A., Bengtsson, M., Löfqvist, J., Biddle, A., Plass, E., Francke, W. 2000. Laboratory and field study of the attraction of male pea midges, Contarinia pisi, to synthetic sex pheromone components. Journal of Chemical Ecology 26: 1941–52CrossRefGoogle Scholar
Hillbur, Y., Celander, M., Baur, R., Rauscher, S., Haftmann, J., Franke, S., Francke, W. 2004. Identification of the sex pheromone of the swede midge, Contarinia nasturtii. Journal of Chemical Ecology. In pressCrossRefGoogle Scholar
Kikkert, J.R., Hoepting, C.A., Shelton, A.M. 2002. Swede midge. Fact Sheet Page 751.3 [online]. Cornell Cooperative Extension, Cornell University, Ithaca, New York. Available from http://www.nysipm.cornell.edu/factsheets/vegetables/cruc/sm.pdf [cited 29 September 2004]Google Scholar
Koblet, R. 1965. Der landwirtschaftliche Pflanzenbau. Basel, Switzerland: Birkhäuser-VerlagCrossRefGoogle Scholar
Nei, M., Kumar, S. 2000. Molecular evolution and phylogenetics. New York: Oxford University PressCrossRefGoogle Scholar
Posada, D., Crandall, K.A. 1998. MODELTEST: testing the model of DNA substitution. Bioinformatics 14: 817–8CrossRefGoogle ScholarPubMed
Rodriguez, F., Oliver, J.F., Marin, A., Medina, J.R. 1990. The general stochastic model of nucleotide substitution. Journal of Theoretical Biology 142: 485501CrossRefGoogle ScholarPubMed
Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H., Flook, P. 1994. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America 87: 651701CrossRefGoogle Scholar
Skuhravá, M. 1997. 2.7 – Family Cecidomyiidae. pp 71204in Papp, L., Darvas, B. (Eds), Contributions to a manual of Palearctic Diptera. Volume 2. Nematocera and lower Brachycera. Budapest, Hungary: Science HeraldGoogle Scholar
Uechi, N., Tokuda, M., Yukawa, J., Kawamura, F., Teramoto, K.K., Harris, K.M. 2003. Confirmation by DNA analysis that Contarinia maculipennis (Diptera: Cecidomyiidae) is a polyphagous pest of orchids and other unrelated cultivated plants. Bulletin of Entomological Research 93: 545–51CrossRefGoogle ScholarPubMed
Witzgall, P., Lindblom, T., Bengtsson, M., Tóth, M. 2004. The pherolist, Internet edition [online]. Available from http://www-pherolist.slu.se/pherolist.php [cited 29 September 2004]Google Scholar