Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T07:09:16.789Z Has data issue: false hasContentIssue false

Molecular divergence between Gryllus rubens and Gryllus texensis, sister species of field crickets (Orthoptera: Gryllidae)

Published online by Cambridge University Press:  02 April 2012

D.A. Gray*
Affiliation:
Department of Biology, California State University, 18111 Nordhoff Street, Northridge, California 91330-8303, United States of America
P. Barnfield
Affiliation:
Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada L2S 3A1
M. Seifried
Affiliation:
Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada L2S 3A1
M.H. Richards
Affiliation:
Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada L2S 3A1
*
1 Corresponding author (e-mail: [email protected]).

Abstract

We assess the degree of sequence divergence in the maternally inherited mitochondrial cytochrome c oxidase I (COI) and cytochrome b (CytB) genes between two sister species of field crickets, Gryllus rubens Scudder, 1902 and Gryllus texensis Cade and Otte, 2000. We analyzed 1460 base pairs from 10 individuals of each species; individuals were sampled from areas of both allopatry and sympatry. Overall average pairwise mitochondrial sequence divergence between species was 1.4% ± 0.1% (mean ± SD); however, there was almost an order of magnitude more divergence in COI (2.59% ± 2.25%) than in CytB (0.35% ± 0.24%). Gryllus texensis appears to harbor a much greater level of genetic variation than does G. rubens. Phylogenetic trees constructed from these sequences show reasonable separation of species; however, sequences are not reciprocally monophyletic. Gene tree polyphyly may reflect recent species-level divergence and (or) interspecific gene flow. The pattern of sequence divergence and genetic variation in these taxa is consistent with allopatric or peripatric speciation in Pleistocene glacial refugia in the southeastern (G. rubens ancestral lineage) and southcentral United States (G. texensis ancestral lineage).

Résumé

Nous évaluons le degré de divergence des séquences dans les gènes mitochondriaux d'origine maternelle, cytochrome c oxydase I (COI) et cytochrome b (CytB), chez les espèces soeurs de grillons des champs Gryllus rubens Scudder, 1902 et Gryllus texensis Cade et Otte, 2000. Nous avons analysé 1460 paires de bases chez 10 individus de chaque espèce, prélevés dans des zones d'allopatrie et de sympatrie. La divergence globale des séquences mitochondriales, paire par paire, entre les espèces est de 1,4 % ± 0,1 % (moyenne ± ET); cependant, la divergence de COI (2,59 % ± 2,25 %) est d'un ordre de grandeur plus importante que celle de CytB (0,35 % ± 0,24 %). Gryllus texensis semble posséder un niveau beaucoup plus élevé de variation génétique que G. rubens. Les arbres phylogénétiques élaborés à partir de ces séquences montrent une séparation adéquate des espèces, mais les séquences ne sont pas réciproquement monophylétiques. La polyphylie des arbres génétiques peut indiquer une divergence récente au niveau des espèces et (ou) un flux génétique interspécifique. Les patrons de divergence des séquences et de variation génétique chez ces taxons sont compatibles avec une spéciation allopatrique ou péripatrique dans les refuges glaciaires du pléistocène dans le sud-est (lignée ancestrale de G. rubens) et le centre-sud (lignée ancestrale de G. texensis) des États-Unis.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arbogast, B.S., Edwards, S.V., Wakeley, J., Beerli, P., and Slowinski, J.B. 2002. Estimating divergence times from molecular data on phylogenetic and population genetic timescales. Annual Review of Ecology and Systematics, 33: 707740.CrossRefGoogle Scholar
Avise, J.C. 2000. Phylogeography: the history and formation of species. Harvard University Press, Cambridge, Massachusetts.CrossRefGoogle Scholar
Broughton, R.E., and Harrison, R.G. 2003. Nuclear gene genealogies reveal historical, demographic and selective factors associated with speciation in field crickets. Genetics, 163: 13891401.CrossRefGoogle ScholarPubMed
Brower, A.V.Z. 1994. Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial DNA evolution. Proceedings of the National Academy of Sciences of the United States of America, 91: 64916495.CrossRefGoogle ScholarPubMed
Caccone, A., and Sbordoni, V. 2001. Molecular biogeography of cave life: a study using mitochondrial DNA from bathysciine beetles. Evolution, 55: 122130.Google ScholarPubMed
Cade, W.H., and Tyshenko, M.G. 1990. Geographic variation in hybrid fertility in the field crickets Gryllus integer, G. rubens, and Gryllus sp. Canadian Journal of Zoology, 68: 26972700.CrossRefGoogle Scholar
Caterino, M.S., and Sperling, F.A.H. 1999. Papilio phylogeny based on mitochondrial cytochrome oxidase I and II genes. Molecular Phylogenetics and Evolution, 11: 122137.CrossRefGoogle ScholarPubMed
Coyne, J.A., and Orr, H.A. 1989. Patterns of speciation in Drosophila. Evolution, 43: 362381.CrossRefGoogle ScholarPubMed
Coyne, J.A., and Orr, H.A. 2004. Speciation. Sinauer Associates, Inc., Sunderland, Massachusetts.Google Scholar
Farrell, B.D. 2001. Evolutionary assembly of the milkweed fauna: cytochrome oxidase I and the age of Tetraopes beetles. Molecular Phylogenetics and Evolution, 18: 467478.CrossRefGoogle ScholarPubMed
Fitzpatrick, M.J., and Gray, D.A. 2001. Divergence between the courtship songs of Gryllus texensis and G. rubens (Orthoptera: Gryllidae). Ethology, 107: 10751086.CrossRefGoogle Scholar
Gray, D.A. 2005. Does courtship behavior contribute to species-level reproductive isolation in field crickets? Behavioral Ecology, 16: 201206.CrossRefGoogle Scholar
Gray, D.A., and Cade, W.H. 2000. Sexual selection and speciation in field crickets. Proceedings of the National Academy of Sciences of the United States of America, 97: 1444914454.CrossRefGoogle ScholarPubMed
Gray, D.A., Walker, T.J., Conley, B.E., and Cade, W.H. 2001. A morphological means of distinguishing females of the cryptic field cricket species, Gryllus rubens and G. texensis (Orthoptera: Gryllidae). Florida Entomologist, 84: 314315.CrossRefGoogle Scholar
Hajibabaei, M., Janzen, D.H., Burns, J.M., Hallwachs, W., and Hebert, P.N.D. 2006. DNA barcodes distinguish species of tropical Lepidoptera. Proceedings of the National Academy of Sciences of the United States of America, 103: 968971.CrossRefGoogle ScholarPubMed
Hall, T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41: 9598.Google Scholar
Harrison, R.G. 1979. Speciation in North American field crickets: evidence from electrophoretic comparisons. Evolution, 33: 10091023.CrossRefGoogle ScholarPubMed
Harrison, R.G., and Bogdanowicz, S.M. 1995. Mitochondrial DNA phylogeny of North American field crickets: perspectives on the evolution of life cycles, songs, and habitat associations. Journal of Evolutionary Biology, 8: 209232.CrossRefGoogle Scholar
Hebert, P.N.D., Cywinska, A., Ball, S.L., and de Waard, J.R. 2003. Biological identifications through DNA barcodes. Proceedings of the Royal Society of London, Series B: Biological Sciences, 270: 213321.CrossRefGoogle ScholarPubMed
Hebert, P.N.D., Penton, E.H., Burns, J.M., Janzen, D.H., and Hallwachs, W. 2004. Ten species in one: DNA barcoding reveals cryptic species in the neo-tropical skipper butterfly Astraptes fulgerator. Proceedings of the National Academy of Sciences of the United States of America, 101: 1481214817.CrossRefGoogle Scholar
Hewitt, G.M. 2001. Speciation, hybrid zones and phylogeography — or seeing genes in space and time. Molecular Ecology, 10: 537549.CrossRefGoogle ScholarPubMed
Ho, S.Y.W., Phillips, M.J., Cooper, A., and Drummond, A.J. 2005. Time dependency of molecular rate estimates and systematic overestimation of recent divergence times. Molecular Biology and Evolution, 22: 15611568.CrossRefGoogle ScholarPubMed
Howard, D.J. 1983. Electrophoretic survey of eastern North American Allonemobius (Orthoptera: Gryllidae): evolutionary relationships and the discovery of three new species. Annals of the Entomological Society of America, 76: 10141021.CrossRefGoogle Scholar
Howard, D.J., and Berlocher, S.H. 1998. Endless forms: species and speciation. Oxford University Press, New York.Google Scholar
Huang, Y., Ortí, G., Sutherlin, M., Duhachek, A., and Zera, A. 2000. Phylogenetic relationships of North American field crickets inferred from mitochondrial DNA data. Molecular Phylogenetics and Evolution, 17: 4857.CrossRefGoogle ScholarPubMed
Huelsenbeck, J.P., and Ronquist, F. 2001. MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics, 17: 754755.CrossRefGoogle ScholarPubMed
Izzo, A.S., and Gray, D.A. 2004. Cricket song in sympatry: species specificity of song without reproductive character displacement in Gryllus rubens. Annals of the Entomological Society of America, 97: 831837.CrossRefGoogle Scholar
Juan, C., Oromi, P., and Hewitt, G.M. 1995. Mitochondrial DNA phylogeny and sequential colonization of Canary Islands by darkling beetles of the genus Pimelia (Tenebrionidae). Proceedings of the Royal Society of London, Series B: Biological Sciences, 261: 173180.Google ScholarPubMed
Lin, C.-P., and Danforth, B.N. 2004. How do insect nuclear and mitochondrial gene substitution patterns differ? Insights from Bayesian analyses of combined datasets. Molecular Phylogenetics and Evolution, 30: 686702.CrossRefGoogle ScholarPubMed
Lunt, D.H., Zhang, D.X., Szymura, J.M., and Hewitt, G.M. 1996. The insect cytochrome oxidase I gene: evolutionary patterns and conserved primers for phylogenetic studies. Insect Molecular Biology, 5: 153165.CrossRefGoogle ScholarPubMed
Mendelson, T.C., and Shaw, K.L. 2002. Genetic and behavioral components of the cryptic species boundary between Laupala cerasina and L. kohalensis (Orthoptera: Gryllidae). Genetica, 116: 301310.CrossRefGoogle ScholarPubMed
Monaghan, M.T., Balke, M., Gregory, T.R., and Vogler, A.P. 2005. DNA-based species delineation in tropical beetles using mitochondrial and nuclear markers. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 360: 19251933.CrossRefGoogle ScholarPubMed
Nichols, R. 2001. Gene trees and species trees are not the same. Trends in Ecology and Evolution, 16: 358364.CrossRefGoogle Scholar
Parsons, Y.M., and Shaw, K.L. 2001. Species boundaries and genetic diversity among Hawaiian crickets of the genus Laupala identified using amplified fragment length polymorphism. Molecular Ecology, 10: 17651772.CrossRefGoogle ScholarPubMed
Rand, D.M., and Harrison, R.G. 1989. Ecological genetics of a mosaic hybrid zone: mitochondrial, nuclear, and reproductive differentiation of crickets by soil type. Evolution, 43: 432449.CrossRefGoogle ScholarPubMed
Schneider, S., Roessli, D., and Excoffier, L. 2000. Arlequin: a software for population genetics data analysis. Version 2.000 [computer program]. Genetics and Biometry Lab, Department of Anthropology, University of Geneva. Available from http://lgb.unige.ch/arlequin/software/.Google Scholar
Shaw, K.L. 1996. Sequential radiations and patterns of speciation in the Hawaiian cricket genus Laupala inferred from DNA sequences. Evolution, 50: 237255.CrossRefGoogle ScholarPubMed
Shaw, K.L. 1999. A nested analysis of song groups and species boundaries in the Hawaiian cricket genus Laupala. Molecular Phylogenetics and Evolution, 11: 332341.CrossRefGoogle ScholarPubMed
Shaw, K.L. 2002. Conflict between nuclear and mitochondrial DNA phylogenies of a recent species radiation: What mtDNA reveals and conceals about models of speciation in Hawaiian crickets. Proceedings of the National Academy of Sciences of the United States of America, 99: 1612216127.CrossRefGoogle ScholarPubMed
Simmons, R.B., and Weller, S.J. 2001. Utility and evolution of cytochrome b in insects. Molecular Phylogenetics and Evolution, 20: 196210.CrossRefGoogle ScholarPubMed
Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H., and Flook, P. 1994. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymer-ase chain reaction primers. Annals of the Entomological Society of America, 87: 651701.Google Scholar
Smith, C.J., and Cade, W.H. 1987. Relative fertility in hybridization experiments using three song types of the field crickets Gryllus integer and Gryllus rubens. Canadian Journal of Zoology, 65: 23902394.CrossRefGoogle Scholar
Sunnucks, P. 2000. Efficient genetic markers for population biology. Trends in Ecology and Evolution, 15: 199203.CrossRefGoogle ScholarPubMed
Swofford, D.L. 2002. PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4 [computer program]. Sinauer Associates, Inc., Sunderland, Massachusetts.Google Scholar
Thompson, J.D., Higgins, D.G., and Gibson, T.J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22: 46734680.CrossRefGoogle ScholarPubMed
Tregenza, T., Pritchard, V.L., and Butlin, R.K. 2000 a. The origins of premating reproductive isolation: testing hypotheses in the grasshopper Chorthippus parallelus. Evolution, 54: 16871698.Google ScholarPubMed
Tregenza, T., Pritchard, V.L., and Butlin, R.K. 2000 b. Patterns of trait divergence between populations of the meadow grasshopper, Chorthippus parallelus. Evolution, 54: 574585.Google ScholarPubMed
Wells, M.M., and Henry, C.S. 1998. Songs, reproductive isolation, and speciation in cryptic species of insects. In Endless forms: species and speciation. Edited by Howard, D.J. and Berlocher, S.H.. Oxford University Press, New York. pp. 217233.Google Scholar
Willett, C.S., Ford, M.J., and Harrison, R.G. 1997. Inferences about the origin of a field cricket hybrid zone from a mitochondrial DNA phylogeny. Heredity, 79: 484494.CrossRefGoogle ScholarPubMed
Zhang, D.-X., and Hewitt, G.M. 1996. Assessment of the universality and utility of a set of conserved mitochondrial COI primers in insects. Insect Molecular Biology, 6: 143150.Google Scholar